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G4G10 Preface

An aura of magic permeates a Gathering 4 Gardner. It’s not just the presence of magicians, eager 
to display amazing feats of sleight of hand and sleight of mind. It’s the pervasive spirit of ferocious 
creativity and antic playfulness among all the participants, whether magician, mathematician, artist, 
writer, inventor, engineer, scientist, toymaker, or puzzle master, that makes a Gathering such an 
enchanting and exhilarating experience.

Numbering in the hundreds, the members of this potent jumble are there to honor and remember 
Martin Gardner, whose many writings, particularly on recreational mathematics and magic, have had 
such a profound and lasting influence on their lives.

The contributions published here underscore the diversity of participation and thought at the tenth 
Gathering 4 Gardner, held in Atlanta in 2012. They encapsulate the spirit of enthusiastic sharing so 
characteristic of a Gathering. Where else could one find origami instructions for crafting a hyperbolic 
crane or folding Martin Gardner, outrageously punny cartoons, a recipe for chocolate chip pi, or rules 
for a game based on the chemical element Seaborgium, along with the inside scoop on a ten-card 
magic spell, all in one place?

These offerings, however, represent only a part of the experience of attending a Gathering 4 Gardner. 
Just as important are the chance encounters, enthralling conversations, spontaneous collaborations, 
and bouts of impromptu puzzle posing and solving that spark new ideas and inventions. Undoubtedly, 
future volumes of Gathering proceedings will offer glimpses of these newly inspired bursts of creativity.

The experience also goes well beyond merely listening to formal presentations in the packed conference 
hall: a roomful of giddy participants gamely tossing colored handkerchiefs in an attempt to learn the 
rudiments of juggling; a famed mathematician deftly performing card tricks in an impromptu corridor 
session; the group construction of an intricate mathematical structure during an afternoon picnic; an 
artist recounting the passion and process that led to a work on display in the art exhibit.

Martin Gardner died on May 22, 2010, at the age of 95. Though he practically never attended the 
Gatherings held in his honor, his spirit pervaded the events, and they remain very much a part of his 
legacy. They speak to his broad interests as an intrepid explorer of ideas and to his quiet generosity 
and whimsical nature.

Ivars Peterson 

http://mathtourist.blogspot.com
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Date: Thursday, 29/Mar/2012
8:30am

- 
10:00am

ThuAM1: Thursday AM Early
Location: Ritz Carlton Large Meeting Room

Presentations
What to do with a rubber band
Hart, George

Update on North America's only Museum of Mathematics
Lawrence, Cindy

Flexible Polyforms
Muniz, Alexandre

The Whimsical Side of Martin Gardner
Sonenshein, Charles

10 flexes on a flexagon
Sherman, Scott

Ponder-This
Margalit, Oded

It's Not Music, It's Theory
Orman, Hilarie

Clouds in My Coffee / Pattern Recognition or Wake up & Photo Your Coffee!
Goldklang, Lew

10 MatheMagics for G4G10
Kauffman, Louis

Limited placement of Polyominoes
Golomb, Solomon W.

Celebration of Mind Party for Chicago
Railing, Max

10:30am
- 

12:00pm

ThuAM2: Thursday AM Late
Location: Ritz Carlton Large Meeting Room

Presentations
The Looking Glass Motion Effect
Brecher, Kenneth

The Cover and Column of the Feb 1971 Scientific American
Smith, Alvy Ray

Fruitloopery
Crease, Robert

G4G10 Schedule 

/ /
Virtual Mechanical Puzzles
van Grol, Rik

Organising a successful national math week
Gill, Eoin; Donegan, Sheila

"Go First" Dice
Harshbarger, Eric

Fractal graphs by iterated substitution
Segerman, Henry

Let's play a concentration game with a few cards
Iwasawa, Hirokazu

Fads and Fallacies in the Name of Science and pseudoscience in China
Danyang, Chen

Martin and Lewis
Burstein, Mark

A Close Encounter With Near Misses
Kaplan, Craig
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1:30pm
- 

3:30pm

ThuPM1: Thursday PM Early
Location: Ritz Carlton Large Meeting Room

Presentations
Meet the Attendees
Pegg Jr., Ed

Teaching Math With Logic Puzzles
Hollingsworth, Blane

Mathematical Bead Weaving
Fisher, Gwen Laura

2x1 rectangles and domes
Harriss, Edmund

Truchet Tile Mosaics
Bosch, Robert

The Secretary Problem from the Applicants Point of View
Glass, Darren

10 Amazing Geometry Machines plus 2 more
Esterle, Richard

Computing and the Art of the Letter X
Szczepanski, Amy

Stereographic Photography and Numerology
Torrence, Bruce

4+X Symmetries in Temari
Yackel, Carolyn

What I Learned From Hanging Out With Creationists
Rosenhouse, Jason

A Trip to Euclid Avenue, Incorporating the final days before doomsday
Conway, John Horton

4:00pm
- 

5:30pm

ThuPM2: Thursday PM Late
Location: Ritz Carlton Large Meeting Room

Presentations
G4G - CoM
Thompson, Tanya

A Deep Dive into Game Club
Ritchie, Bill

16 is Not Enough: The Minimum-Clue Conjecture for Sudoku
Taalman, Laura/ /

See-saw Swap Solitaire
Roby, Tom; Propp, James; Linton, Steven; West, Julian

Live anamorphoses
Blasco, Fernando

Fun with Sierpinski's Gasket
Gosper, R. William; Ziegler Hunts, Julian

How Many Powers of 2 Can Be Subset Sums of a Set of Size n?
Moulton, David

Teaching Bright Kids Math Using Hackenbush
Davis, Tom

X-only Tic-Tac-Toe
Plambeck, Thane

Wrapping a Box with a Riboon
Henle, James; Henle, Frederick

Generic Numerical Challenges
Wainwright, Robert
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Date: Friday, 30/Mar/2012
8:30am

- 
10:00am

FriAM1: Friday AM Early
Location: Ritz Carlton Large Meeting Room

Presentations
Ten Tetrahedra Emerge
Torrence, Eve

Space-Filling Curves with Space-Filling Borders
McKenna, Doug

Have a "GO" at "LIFE"
Elran, Yossi

Imaginary Cube Puzzles.
Tsuiki, Hideki

Ten Piece Icosahedron Puzzles
Bell, George

An A* Sales Pitch, with chestnuts
Atkinson, Adam

The Bicolored Hexahexaflexagon
McLean, Thomas Bruce

What Shape is a Tree?
Miller, John

Vanishing Leprechauns, Kermit the Frogs, and Buildings
Chartier, Tim

Patterns II: Inductive logic game & tool for research training.
Schindler, Jay; Hurd, Lyman

Progressively More Difficult Polyomino Trays
Waite, William

10:30am
- 

12:00pm

FriAM2: Friday AM Late
Location: Ritz Carlton Large Meeting Room

Presentations
Powers of Ten
Crease, Robert; Crease, Alexander

Rot, Ten
Oberg, Bruce

Anti - G
Sandfield, Robert

Sleights of MindSleights of Mind
Macknik, Stephen

What the Neuroscience of Magic Reveals About our Brains
Martinez-Conde, Susana

Illusions, attention, and the limits of awareness
Simons, Dan

Gestalt Magic: The Perceptual Foundations of Stage Illusion
Barnhart, Anthony

1:30pm
- 

3:30pm

FriPM1: Friday PM Early
Location: Ritz Carlton Large Meeting Room

Presentations
Margaret Wertheim's G4G10 Talk
Wertheim, Margaret

Twenty Moves Suffice for Rubik's Cube
Rokicki, Tomas; Kociemba, Herbert; Davidson, Morley; Dethridge, John

Developing the Over The Top 17x17x17 puzzle
van Deventer, Oskar

Definitions in Twisty Puzzles
Cohen, Bram

Designing and building twisty puzzles
van der Zanden, Tom

Beyond Rubik's Cube
Hoffman, Paul

How Do You Scramble a Puzzle?
Garron, Lucas
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SUPERFLEXAGON!
Schwartz, Ann

Infinite Regular Polyhedra
Green, Melinda

Why Math Education Needs Puzzles
Kim, Scott

Fun with soap films and Platonic Solids
Becker, Bob

4:00pm
- 

5:30pm

FriPM2: Friday PM Late
Location: Ritz Carlton Large Meeting Room

Presentations
Pablos Holman's G4G10 Talk
Holman, Pablos

Folding the Hyperbolic Crane
Lang, Robert J.; Alperin, Roger C.; Hayes, Barry

Large Scale Modular Origami
Mosely, Jeannine

Tilings with pentagons
Scherphuis, Jaap

Geometrical shapes made with magnetic balls
Timmermans, Edo

Reversing the Game of Life for Fun and Profit
Bickford, Neil

Ten powerful ideas, iambically defined
Jones, Kate

Date: Saturday, 31/Mar/2012
8:30am

- 
SatAM1: Saturday AM Early
Location: Ritz Carlton Large Meeting Room

10:00am Presentations
Medical Diagnostics, Bayes' Theorem, and Nomography
Marasco, Joe

Cyclic Paths Inside Platonic Shells
Daniel, Wayne

Fortunatus's Purse: G4GX is in the bag (along with everything else)
Goldstine, Susan

"Loopy Love" -- A Twisted Tale on a Mobius Strip
Cipra, Barry

The self-wiring multi-state maze
Gilbert, Andrea

Polyform Puzzler, New Polyforms, and Recent Results
Goodger, David J.

A Ten-Cell Ornament
Banchoff, Thomas

10:30am
- 

12:00pm

SatAM2: Saturday AM Late
Location: Ritz Carlton Large Meeting Room

Presentations
Quantum Entanglement: Real but Mysterious
Perkowitz, Sidney

Visualizing the 10-Dimensional 11-Cell
Sequin, Carlo

The Venus Scale
Schwabe, Caspar

On Regular Linked Structures
Jespersen, Bjarne

Quasi-Crystal Pavilion
Hizume, Akio

Ten Triangle Tensegrity
Swedenborg, Peter
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Visual Pattern Generators
Edmark, John

Drop City, Domes and Zomes
Hildebrandt, Paul

1:00pm
- 

5:00pm

SatPM: Saturday PM at Tom's House

Date: Sunday, 01/Apr/2012
8:30am

- 
10:30am

SunAM1: Sunday AM Early
Location: Ritz Carlton Large Meeting Room

Presentations
Grand Bowties - the Aerobics for a brain
Zivkovic, Zdravko; Zivkovic, Teodora

Nob's puzzle collection and my paper puzzle
Uehara, Ryuhei

Drawing one-tenth similar triangle
Hosoya, Haruo

Algorithmic Puzzle Paradoxes
Levitin, Anany

Tricky Arithmetics
Khovanova, Tanya

Shogi Problems and Shogi Programs
Kotani, Yoshiyukiy

The Daughters of Hypatia: Circles of Mathematical Women
Schaffer, Karl

Circo Matemático. Another World Record
Hirth, Tiago; Silva, Jorge Nuno

Geometry of Soccer
Carvalho, Alda; Santos, Carlos P.; Silva, Jorge N.

Latin Erdos
Silva, Jorge Nuno

Higher dimensional images connected to gravity and quantum field theory
Ocneanu, Adrian

Design of non-linear writing systems
Sai, .

Tangled Bands
Abel, Zachary

11:00am
- 

1:00pm

SunAM2: Sunday AM Late
Location: Ritz Carlton Large Meeting Room

Presentations
Novel Educational Toys/Puzzles to Teach Multiplications to Grade School Children
Miura, Kenichi

Kite Spiral
Iwai, Masayoshi

Photographic Fractal Trees
Fathauer, Robert

Points of Intersection
Taimina, Daina

The snake and the hunter
Recaman, Bernardo

Complexity of Inaba's coin--covering problem
Hearn, Bob

Upper Bound for Inaba's Coin-Covering Problem
Hearn, Bob

Math Education from a Fresh(er) Perspective
Brown, Ethan

What Would Martin Tweet?
Mulcahy, Colm

Room X
Richards, Dana
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The Making of the 36 Cube
Niederman, Derrick

Non-Euclidean Board Games
Hawksley, Andrea Johanna

Counting the Rationals
Calkin, Neil

2:00pm
- 

3:00pm

Gift Exchange: G4G10 Gift Exchange

Presentations
"It's a Twister!"
Udall, Timothy

"The Elusive "E & Card" .
Rowett, Tim

/dev/joe's Pythagorean Puzzle
DeVincentis, Joseph

1/2+1/2-1=0
Pereira dos Santos, Carlos

10 MatheMagics for G4G10
Kauffman, Louis

10x1 in a cube
Knoppers, Peter

12-Card Star Sculpture Puzzle
Hart, George

2 x ribbon spread turnover = 1 x tractrix racer
Polster, Burkard

2012 EQUTIONS
Halici, Emrehan

3 LIGHTS OUT Puzzles for G4G10
Shader, Leslie; Shader, Bryan; Ipiña, Lynne

4 x 4 paper folding puzzle
Becker, Bob

4G4G4G10
Silva, Jorge Nuno

A "Stressful" Puzzle
Abel, Zachary

A 10-Dimensional Jewel
Sequin, Carlo

A Porous Aperiodic Decagon Tile
Bailey, Duane; Zhu, Feng

A Self-Negative Half-Space-Filling, Space-Filling Curve
McKenna, Doug

A Simple Time Machine
Engel, Doug

A Ten-Cell Ornament
Banchoff, Thomas

A-Z cubed
Manderscheid, Roger

Acrylic Decagram Puzzle
Muniz, Alexandre

Almost Symmetric
Bosch, Robert

Another Chess Mystery of Sherlock Holmes
Butters, Jerry

Anti - G
Sandfield, Robert

Backwards addition
Butler, Steve

Balance Puzzles
Hess, Dick
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Bayes' Theorem Nomogram
Marasco, Joe

Blocked Bottom and Top Puzzle
Strout, Henry & Jeanne

Borders: a variant of Dots & Boxes
Colwell, Jason Andrew

Twas the Night Before Gardner
Terlep, Timothy

Bowties
Jones, Kate

Brainfreeze Sudoku variation puzzles
Taalman, Laura; Riley, Philip

Celebration of Mind Party for Chicago
Railing, Max

Chocolate Chip Pi
Chartier, Tim

Clouds in My Coffee / Pattern Recognition or Wake up & Photo Your Coffee!
Goldklang, Lew

Clueless Word Puzzles
Henle, Frederick

Collapsing numbers in bases 2, 3, and beyond
Butler, Steve; Graham, Ron; Stong, Richard

Computer Hackenbush
Davis, Tom

Constructing the dodecahedral trail
Calkin, Neil

Cross Checker Paper Folding Puzzle
Uehara, Ryuhei

crossword puzzle
Moulton, David

Cube Route
Bobroff, Saul

Cube ’n Cube
Jespersen, Bjarne

Cuboku
Henle, James

Cut and Assemble Icosahedra, Twelve Models in White and Color
Torrence, Eve

Deltahedra Puzzles
Longtin, Tom

Design by einstein
Socolar, Joshua

DOODLES
Nightingale, Simon

DVD of Selected Works by John Edmark
Edmark, John

Eureka!'s Cross Reference to Mathematical Thinking
Leschinsky, David

Factor Subtractor
Cipra, Barry

Feel the Movement
Fink, Alex; Sai, .

Fingerprint Maze
Carpenter, Elizabeth

Folded Cookies for a Skeptic (Physical Gift) with Uploaded Paper
Orndorff, Robert
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F ldi M ti G dFolding Martin Gardner
Demaine, Erik; Demaine, Martin

Fortunatus X
Goldstine, Susan

Four Corners Puzzle
Maslanka, Chris

Four Semi-Chestnuts
Atkinson, Adam

Fractal Trees book
Fathauer, Robert

Free access to The Mathematical Intelligencer, vol. 33, no. 4
Senechal, Marjorie

Fruitloopery
Crease, Robert

G4 / G10 packing puzzle
Chaffin, Ben

G4G10 Dice
Harshbarger, Eric

Gwen's 65 Puzzle
Schaffer, Karl

Hex Over Easy
Stephens, James

hexaflexagons
Sonenshein, Charles

Hyperbolic Crane Diagrams
Lang, Robert

Imaginary Cubes H and T
Tsuiki, Hideki

Infinity Dodecahedron Beaded Bead
Fisher, Gwen Laura

Knotted Cog

Segerman, Henry

Laurie's G4GX Pot Pourri
Brokenshire, Laurie

Lominoes for G4GX
Bell, George

Magic Jumping Mouse
Turner, Stephen

The Mutilated Chess Board (Revisited)
Wright, Colin

Math Horizons
Torrence, Bruce

Minskys and Trinskys
Gosper, R. William; Ziegler Hunts, Julian; Holloway, John T.; Ziegler Hunts, Corey

MODULOR
Schwabe, Caspar

Non-Euclidean Board Games
Hawksley, Andrea Johanna

origami
Reis, Marti

Out of The Box
van Deventer, Oskar

Packing Puzzle
Rokicki, Tomas

PENTA-GONE PUZZLE
Niederman, Derrick
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Taking Sudoku Seriously Offprint
Taalman, Laura; Rosenhouse, Jason

Temari Magnet
Yackel, Carolyn

Ten Card Magic Spell
Hofmeister, Conner

Ten Sided Yin-Yang Globe
Starr, Norton

TEN-Piece Dissection for Martin
Sandfield, Norman

TerseTalk (android app)
Strickland, Henry

Pentagon Tilings
Scherphuis, Jaap

Perspicuity: Cartoons by Craig Swanson
Swanson, Craig

Portuguese Championship of Mathematical Games & 1/2+1/2-1=0
Carvalho, Alda; Santos, Carlos

postcard and vZome
Vorthmann, Scott

Puzzles in Recruiting -- a Practical Purpose for Puzzles
Dunlap, Richard

Puzzles with hidden sines
Lawrence, David

Quasi-Crystal Pavilion
Hizume, Akio

Quilt 100, Two Mutually Orthogonal Squares of Order 10
Kepner, Margaret

Quintet in F
Slocum, Jerry

Recreational Mathematics Conference Posters
Hirth, Tiago

Representations of the 10 Geometric (10,3) Configurations
Johnston, William; Farrell, Jeremiah; Echols, Lacey

Retrolife - revisited
Elran, Yossi

rhombic triacontahedron pieces
Comstock, Jana

Rubik's Cube Prototype
Hoffman, Paul

SEABORGIUM CHEMICAL TABLE
Farrell, Jeremiah

So Many Presentations, So Little Time!
Barnhart, Anthony

So you want to become a magician...
Levy, Doron

Some New Combinatorial Games (From the Past Ten Years)
Siegel, Aaron

Spidron Anti-Prism (Right handed) and Spidron Anti-Prism (Left handed)
Allen, Amina; Stranahan, Mike

Square and Pentagon
Morgan, Christopher

Stewart Coffin #225
Raizer, Harold

SUPERFLEXAGON!
Schwartz, Ann
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The Amazing Neon Flicker! with Element #10 - NEON
Gilbertson, Roger G.

The Feb 1971 Scientific American Cover and Column
Smith, Alvy Ray

The Incompatible Food Triad -- Recipe Book #1

Inglis, Tiffany C.

The Mathematics of Martin Gardner
Peterson, Ivars

The Monkey Business Illusion
Simons, Dan

The Secrets of Notakto: Winning at X-only Tic-Tac-Toe
Plambeck, Thane

The Stepping-Stone maze - A self-wiring multi-state maze
Gilbert, Andrea; Abbott, Robert

The Trickiest Little Sliding Block Puzzle
Bickford, Neil

Three piece puzzle
van der Zanden, Tom

Three Variations on the G4G10 Theme
Levitin, Anany

Tool for "Kite Spiral"
Iwai, Masayoshi

TOURMALINE - A Gem of a Gem
Echols, Lacey

Trick-opening cricket boxes from China
de Vreugd, Frans

Tridome Hexayurt model
Harriss, Edmund

Turning Points (Physical Gift Exchange item)
Kisenwether, Joseph

Two-Minute-Folding-Puzzle
Goetz, Markus

T^2 TEN T^2: Ten Terribly Tempting Number Theory Tidbits
Watkins, John

Untouchable 11 – Master Challenge
Hoff, Carl N.

What Shape is a Tree?
Miller, John

Word Rectangle
Elkies, Noam

X Games
Curtis, Pavel

{G4,GX} MagicTile Puzzles
Nelson, Roice
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Folding Martin Gardner

Erik D. Demaine∗ Martin L. Demaine∗

The 22′′ × 28′′ print shown on the next page (“Martin Gardner”, Rives paper, 2012) is part of
the !AHA! Art exhibition with a magical mathematical twist, presented by the Gathering 4 Gardner
in partnership with the Atlanta–Fulton Public Library System, March 19–31, 2012.

The crease pattern on top of the print folds into two forms of Martin Gardner, as shown on the
bottom of the print (not to scale). The rectangular paper sheet folds into the 3D structure of the
words MARTIN GARDNER, as shown in Figure 1, while the grayscale inking in the sheet (top)
forms the photograph of Martin Gardner in the background (bottom).

Figure 1: The 3D shape of the folding.

Martin Gardner taught us to
look at everyday things from dif-
ferent perspectives, in particular
through mathematics. We de-
cided to look at Martin Gardner
in different ways, using mathe-
matics as our toolset.

The crease pattern was de-
signed using an algorithm by
Demaine, Demaine, and Ku
[DDK10a, DDK10b], which de-
scribes how to efficiently fold
any orthogonal “maze” (includ-
ing word outlines like MARTIN
GARDNER) from a rectangle of
paper. Red lines fold one way
and blue lines fold the other way.
To experiment with other de-
signs, try our Maze Folder or
read our papers on the web: http://erikdemaine.org/maze/

Given the complexity of the crease pattern, we expect it never to be folded. If you want
to try your hand at it, though, you can download and print the crease pattern from the web:
http://erikdemaine.org/prints/MartinGardner/

The photograph of Martin Gardner is from the Archives of the Mathematisches Forschungsin-
stitut Oberwolfach, and used with permission.

References
[DDK10a] Erik D. Demaine, Martin L. Demaine, and Jason Ku. Folding any orthogonal maze. In Origami5:

Proceedings of the 5th International Conference on Origami in Science, Mathematics and Edu-
cation (OSME 2010), pages 449–454. A K Peters, Singapore, July 2010.

[DDK10b] Erik D. Demaine, Martin L. Demaine, and Jason Ku. Origami maze puzzle font. In Exchange
Book of the 9th Gathering for Gardner, Atlanta, Georgia, March 2010. To appear.

∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA,
{edemaine,mdemaine}@mit.edu
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Photographic Fractal Trees 
 

Robert W. Fathauer 
Tessellations Company 
3913 E. Bronco Trail 

Phoenix, AZ 85044, USA 
E-mail: tessellations@cox.net 

 
 
 

Abstract 
 

We present several fractal trees created by iterating building blocks constructed from photographs of real trees. 
The use of photographs of different types of trees, along with variation of the parameters available for construction 
of the trees, allows a wide variety of forms to be realized. The trees shown have self-similarity fractal dimension 
varying from 1.45 to 2.17, and infinite series have been used to characterize the number of branches and the area 
of the trees. Randomization of the construction process is demonstrated to yield less regular and more naturalistic 
tree forms.  

 
 

1.   Introduction 
 

Fractals are objects that exhibit self similarity on different scales. In other words, repeatedly 
zooming in on a fractal reveals similar structure over and over again. In a mathematical fractal, 
the level of detail is infinite. In a fractal object in nature, this zooming in can typically only be 
carried out a few times, and the similarity is less regular than in mathematical fractals. 
Examples of fractals in nature include mountains, clouds, coastlines, and arteries in the human 
body. The last is an example of a branching fractal, in which a feature branches into smaller 
features repeatedly. Pythagorean trees are simple mathematical branching fractals constructed 
of alternating triangles and squares [1,2]. Trees in nature are also branching fractals. 
 
 Mathematical fractals are created by iteration, in which a step or series of steps are carried 
out repeatedly. In this paper, we describe a technique for creating fractal trees by iteratively 
arranging copies of photographic building blocks. The resulting constructions are more fractal 
than natural trees and can vary in appearance from naturalistic to fantastical. The work 
described in this paper had its roots in earlier tree-like constructs created by iteratively 
arranging spirals [3].    
 
 All of the photographs were taken using a relatively low-cost digital camera. The drawing program 
FreeHand was used to create preliminary designs of many of the trees, and Photoshop was used to create 
the final tree from the photographs.  
 
 

2.  Method for Creating Photographic Fractal Trees 
 

The process of creating the fractal trees can be broken down into four basic steps.  
     1. Create a preliminary design. 
     2. Identify the tree or bush that will be used and photograph it. 
     3. Digitally alter the photograph(s) to fit the template designed in Step 1. 
     4. Iteratively construct the tree. 
For some of the trees, the design was driven by a desired fractal form, in which case the first 
two steps were in the order shown above. In other cases, it was driven by a photographed tree 
form, in which case the first two steps were reversed in order. 
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 Designing a fractal tree involves designing a building block and then iteratively 
constructing a tree from it. Design choices include how many branchings will occur in each 
segment and exactly where and how the second generation of segments will mate to the first 
segment. Each segment will be scaled down by some factor, rotated by some amount, and 
possibly reflected.  
 

 
 

Figure 1:  Example of the construction process for a photographic fractal tree. (a) One 
or more photographs are combined to create a roughed-out photographic building block. 
(b) Adjustments are made to allow the different photographs to join seamlessly, and for 
the scaled-down building blocks to join seamlessly to the larger building block. In 
addition, the background is carefully trimmed away. (c) Scaled-down copies of the 
building block are arranged around the original (first generation) building block to form 
the second-generation tree. (d) Scaled-down copies of the second-generation tree are 
arranged around the original building block to form the third generation tree.  

 An example is shown in Figure 1. In this case, the preliminary design was done before photographs 
were taken, with the intent of using an aspen tree for the photographic building block. Since it would be 
nearly impossible to find a real tree that had the desired combination of branch sizes and locations, 
several photographs were taken of more than one tree. Pieces were then cut out of a few different 
photographs and pasted together, with some preliminary adjusting of shading and scaling to get the initial 
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version of the building block shown in Figure 1a. Further distortions in shape and adjustments in shading, 
followed by trimming around the edges resulted in the final building block shown in Figure 1b. This 
building block is the first generation of the tree, which includes the lowest portion of the trunk.  
 

 
 

Figure 2:  The final fractal tree that results after 15 iterations of the sort shown in Figure 
1. The inset shows a detail of the tree, against a black background for better contrast. 

 The next step in constructing the tree was to make six copies of it, to scale, rotate, and 
reflect (as desired) each one, and then position them at six different locations along the first 
generation tree. These seven objects were then merged to create the second-generation tree 
shown in Figure 1c. Six copies of the second-generation tree were then made, and they were 
transformed and positioned relative to the first generation tree using the same set of 
transformations to form the third generation tree shown in Figure 1d. This process was 
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continued until the additions to the previous generation were so small as to be insignificant to 
the eye at the full scale of the finished print, as shown in Figure 2. In this case, 15 iterations were 
performed in order that the tree looks line an infinitely-detailed fractal even at dimensions of 
28” x 40”. At that size, the height of the building block is reduced to approximately one pixel. In 
the final print, a black background was used, as in the detail in Figure 2. 
 
 

3.  Further Examples 
 

The different types of trees and bushes that can be used as photographic source material, along with the 
different choices available in the design of the structures, as described above, allow a wide variety of 
forms to be obtained using this construction method. In this section, we present a few additional 
examples. More examples not shown here can be found in other work by the author [4,5].  
 
 In Figure 3, a fractal tree full of spiraling segments has been constructed from a photograph of a 
cholla cactus skeleton. In general, structures that curl in one direction will form when reflections are not 
employed. If there is sufficient turning in each generation, spirals will result. Note that only two smaller 
copies of the photographic building block are added with each iteration.  
 

The tree shown in Figure 4 has straight, thin branches that overlap heavily, creating a complex 
collection of nearly straight-line segments. This tree is not very naturalistic, but emphasizes its fractal 
character through the boundary of the branching regions. The photographic basis for this tree was a group 
of twigs from a palo verde tree. The straightness of the twigs and the nearly right angles between the 
twigs give this tree a distinctive appearance.  

 
The tree shown in Figure 5 is much more naturalistic than that of Figure 4, but its fractal character is 

still quite evident. The branches roughly form a series of triangles that reduce in size moving from lower 
left to upper right. Photographs of a royal poinciana tree in Hawaii were used to create the photographic 
building block for this tree. In contrast to the trees shown in Figures 2–4, for which 15–20 iterations were 
performed, the construction of this tree was terminated after eight iterations. More iterations were found 
to muddy the appearance of the tree due to the large amount of overlap of the branches. This has the 
effect of making the smallest features more naturalistic, as they are similar in size to the smallest twigs on 
a large natural tree. Note that no reflections are employed in this tree. However, in contrast to the tree of 
Figure 3, there is not enough turning to one side to allow spirals to form.  

 
 

4.  Mathematical Properties of the Trees  
 

Relatively simple mathematical analysis can be used to characterize the properties of these trees. Issues 
that can be addressed include the number of branches, the area of the trees, and the complexity of the 
trees. 
 If bi is the number of smaller branches added per larger branch in the ith iteration, then the total 
number of branches added in the ith iteration, Ni, is given by Ni = (1) b1 b2 b3 … bi. (b0 = 1, the trunk). For 
all of the trees shown in this paper, b is the same for each iteration, in which case Ni = bi. For example, if b 
= 3, as in Figure 4, three branches are added in the first iteration, nine in the second, etc. This tree was 
iterated 15 times, so the number of branches added in the final iteration was 315, over 14 million. 
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Figure 3:  A fractal tree formed from photographs of a portion of a cholla cactus 
skeleton. 

 
 The total number of branch segments after i iterations is given by NT  = N1  + N2  + N3  + … + Ni. If b 
is the same for each iteration, NT = b + b2 + b3 + … + bi = b(1 – bi)/(1 – b).  
 The area of one of these two-dimensional trees can also be examined. If the area of the first 
generation is arbitrarily set to 1, then the area of the branches added in the second generation is the sum of 
the area of each of the b branches: A2 = s1

2 + s2
2 + … + sb

2. (The area of the first added branch is the area of 
the first generation, 1, times the square of the scaling factor s1 for that branch, etc.) For example, the tree 
in Figure 4 adds three branches with scaling factors of 0.55, 0.60, and 0.66, giving an area of 0.552 + 0.62 
+  0.662  1.10 for the added branches. Each of these second generation branches will have a similarly 
larger area added to it in the third generation, so the area of the added branches in each generation 
increases by the same factor relative to that of the preceding generation. I.e., the total area AT is given by a 
geometric series, so AT = 1/(1 – A2). For the four trees shown in Figures 2-5, A2 is approximately 0.83, 
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exactly 0.85, approximately 1.10, and exactly 1.0. As a result, the total area diverges (become infinite) in 
the limit of an infinite number of iterations for the trees of Figures 4 and 5. By inspection, the infinitely 
iterated trees clearly fit in a finite area on the page. The infinite area is possible because of the overlap of 
branches.  

 
 

Figure 4:  A fractal tree formed from photographs of palo verde twigs. 
 
 A measure of the complexity of a fractal is provided by the fractal dimension, which evaluates how 
fast a parameter like length increases as scale decreases. There are several different notions of fractal 
dimension [1]. For regular structures like those shown here, the self-similarity dimension provides a ready 
measure. This is given by D = (log b) / (log 1/s), where b is the number of pieces into which the structure 
can be divided, and s is the scaling factor. In this case, b is the number of branches added per larger 
branch. The scaling factor s is different for each branch, so an average value for the branches added was 
used for each tree. The approximate values of D calculated for the four trees shown in Figures 2-5 are 
1.45, 1.61, 2.17, and 2.00 respectively. Qualitatively, this trend agrees with the amount of overlap 
observed in the branches of these four trees. Notice that a fractal dimension greater than 2 for a planar 
structure is only possible with overlapping features.  
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Figure 5:  A fractal tree formed from photographs of a royal poinciana tree. There are 
no reflections of the branches in the construction of this tree.  

 
 

5.  Randomized Fractal Trees 
 

For the trees shown in Figures 2-5, the series of transformations carried out was identical for each 
iteration. However, one or more of the parameters can be varied in order to achieve additional tree forms. 
Varying parameters in a random manner would be expected to generate less mathematically regular 
structures, which therefore have the potential to appear more naturalistic. 
 
 An example is shown in Figure 6, where the same photographic building block was used as for the 
tree of Figure 5. For these trees, however, the choice of whether or not to reflect each branch at each step 
was made randomly. This was accomplished by rolling a 20-sided die at each iteration. The numbers 1-16 
were used to determine which branches reflected. (The die was rolled again if 17-20 came up.) The 
choices can be set by assigning “0” to unreflected and “1” to reflected in the binary representation of the 
number. For example, the number 5 is 0101 in binary, which can be read from left to right as determining 
the first and third branches from the left to be unreflected, and the second and fourth to be reflected.  With 
eight iterations, there are 168 (over 4 billion) distinct trees that can be formed, three of which are shown in 
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Figures 5 and 6. The two trees shown in Figure 6 are the result of two different sets of eight rolls of the 
die. Additional examples of randomized fractal trees can be seen in References 4 and 5.  

 
Figure 6:  Two randomized fractal trees created using the same photographic building 
block used for Figure 5. In this case, the choice of whether or not to reflect each of the 
four branches at each iteration was made randomly. 
 
 

6.  Conclusion 
 

We have presented a variety of fractal trees created by iterating photographic building blocks. The use of 
photographs of different types of trees, along with variation of the parameters available for construction 
of the trees, allows a wide variety of forms to be realized. The trees shown have self-similarity fractal 
dimension varying from 1.45 to 2.17, and infinite series have been used to characterize the number of 
branches and the area of the trees. Randomization of the construction process has been demonstrated to 
yield less regular and more naturalistic tree forms. Even more naturalistic forms could be realized, for 
example by varying the number of branches added with each iteration.  
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Download the complete 23 page, full color 
version of this pattern at 
http://www.beadinfinitum.com/infinityG4G10.pdf

Materials
A large (30mm) Infinity Dodecahedron uses
Size 6/0 seed beads colors A [30]
Size 8/0 seed beads colors A [120], B [60], C* [60]
10mm to 14mm rattle bead (optional)
6.5 feet Nymo nylon beading thread, size D 
Beading needle, size 10

A large Infinity Cube uses
Size 6/0 seed beads colors A [30]
Size 8/0 seed beads colors A [120], B [60], C* [60]
4.5 feet Nymo nylon beading thread, size D
Beading needle, size 10

*The Puzzle Kit has the C beads divided into five 
different colors.  It has11 enough beads to make a 
large dodecahedron and cube as in these photos.  

Dodecahedron: Five Coloring
You can color the 20 vertices of a dodecahedron with 5 colors so that every hole (face) shows all 5 colors.  This 
coloring gives 12/5 = 4 vertices of each color.  These 4 vertices are equally spaced around the dodecahedron, 
and if you imagine lines connecting them, you would have a regular tetrahedron in each color.

Cube: Four Coloring
You can color the 8 vertices of a cube with 4 colors so that every hole (face) shows all 4 colors.  This coloring 
gives 8/4 = 2 vertices of each color.  These 2 vertices will be at opposite ends of the cube.

Copyright 2008, 2012 by Gwen Fisher and Florence Turnour. 
All rights reserved, including the right to reproduce this document, or any portion thereof. 
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3. To make the second ring, * pick up

Repeat from * 3 more times.  Then pick up

Sew though Bead 1 from the side with the tail to complete Ring 2.  

4. Continue sewing around Ring 2 until you exit the first large bead (Bead 6). Ring 3 will take two stitches to 
complete. *Pick up

Repeat from * 2 more times (3 times total).  Then pick up

You should have 11 beads as in Figure 4. Sew through Bead 2 towards Bead 6. Pull any slack in the thread.

5. To complete Ring 3, pick up

Sew through Bead 6 to make a ring, Weave through two small seed beads and Bead 10.  Pull any slack in the 
thread.  See Figure 5 and Photo 5. Notice how the three rings connect only at the larger beads.  All 12 rings on 
the Infinity Bead will have 5 large beads and 10 small beads and two adjacent rings will connect only at the 
larger beads. 

The Infinity Dodecahedron
Start with two sizes of seed beads (large and small in color A).  

1. Thread your needle.  * Pick up

Repeat from * 4 more times (5 times total) to add a total of 15 
beads.

2. Sew through all 15 beads again, in the same direction, to 
make a ring, and slide the ring down leaving a 8 inch tail that 
you will later weave into the bead work.  Tie a square knot with 
the working end and the loose end of the thread, but as you 
tighten the knot, be careful to leave a little bit of slack in the 
ring to keep it flexible. Sew through Bead 1.

For the rest of the project, keep the tension tight enough to 
pick up slack, but loose enough to keep the bead work flexible. 

Figure 1: 
String beads

Figure 2

Figure 3 Figure 4

Photo 2

Figure 5 Photo 5
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6.  Flip the bead work over, and repeat Steps 4 and 5 until you have 8 rings.

7. Position your needle by sewing around Ring 8 through 2 small beads, 
Bead 26, 2 small beads, and Bead 27.  Ring 9 will take four stitches to 
complete.  Pick up

Sew through bead 21.  Pick up

Sew through Bead 15.  Pick up

Sew through Bead 8.  

Figure 6 Photo 6

Photo 9

Photo 10

Figure 7 Figure 8

Figure 9

8. Pick up

Sew through Bead 27. Do not pull the thread 
tight. 

9.  Position your needle by sewing though 
the beads you added in Steps 9 and 10 (and 
the large beads), stopping just after you sew 
through Bead 28.  See Figure 11 and Photo 
11.  

10.  As you pull the thread tight, the bead 
work will begin to curl into a cup.  
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11.  Position the bead work so that it is a cup (rather than a mountain) and 
the single ring with Bead 4 is pointing towards you like in the photos and 
figure.  Ring 10 will take four stitches to complete.  Pick up

Photo 13

Figure 11

Figure 12

Figure 13

Figure 14 Photo 14

14. Ring 11 will take four stitches to com-
plete.  Pick up

Sew counter clockwise through Bead 23. 
Pick up

Sew counter clockwise, across the cup, 
through Bead 4. Pick up

Sew counter clockwise through Bead 29. 
Pick up

Sew counter clockwise through Bead 25. 
Pull the thread tight. The beadwork now 
resembles a squishy ball of beads, hollow 
with one large hole where we weave the 
final ring, Ring 12.  

Sew away from you through Bead 
26 in the adjacent ring. Pick up

Sew away from you through Bead 
5. Do not pull the thread tight. 

12. To complete Ring 10, pick up

Sew through bead 9.  Pick up

Sew through Bead 28.  To position 
your needle, sew through 2 small 
beads, Bead 26, 2 small beads, and 
Bead 25.

13. Pull the thread tight and see 
how the bead work curls into a 
cup.  Orient your cup of beads so 
that the rim faces towards you and 
the bead you are exiting (Bead 
25) is on the top right.  All of the 
beads in Figures 13 are on the cup 
rim.
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Photo 15

Photo 16

15.  Position your needle by sewing 
through 2 small beads in Ring 11, Bead 
23, 2 small beads, and Bead 24.

Optional:  Drop a rattle bead or other 
precious object into the cup.  The holes 
will get a little smaller as you add more 
beads.  As long as the rattle bead is at 
least close to not falling out, it should stay 
trapped later.

16. The final ring, Ring 12, will take five 
stitches to complete.  Pick up

Sew through Bead 18. Pick up

Sew through Bead 12. Pick up

Sew through Bead 3. Pick up

Sew through Bead 30. Pick up

Sew through Bead 24. Pull the thread 
tight. Continue sewing counter clockwise 
half way around Ring 12 to tighten it.

17. Check your work.  Around your 
beadwork, you should see 5-pointed 
stars. Notice how each 5-pointed star is 
composed of 1 pentagon and 5 triangles.  
You should have 12 pentagons and 20 
triangles total.

The Outside Layer
18. So far, you have added the large (Lg) 
beads and the small color A beads.  In 
the next steps, you will be adding small 
beads in colors B and C by sewing first 
through the Lg beads, and later through 
the color B beads until all 20 triangles 
look like Figure 18.

Figure 16

Figure 17

Figure 15

Figure 18
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Photo 19A

Figure 19

Sew through one of the large 
beads in the same triangle as 
Bead 1. You have 2 choices 
about which large bead to 
sew through, either Bead 2 or 
2*.  

Pick up 3 small beads (BCB) 
as above, and sew through 
one large bead in the same 
triangle as Bead 2.  Again, you 
have two choices, either Bead 
3 or 3*.  Figure 19 shows the 
thread passing through Bead 
3.  Photo 19A shows these first 
2 stitches (Bead 1 is at 5:00).  

Continue picking up 3 small 
beads (BCB) and sew through 
one of the large beads in the 
same triangle.  Meander over 
the surface of your bead work, 
through Beads 4, 5, 6, … plan-
ning ahead so that you do 

Photo 19B

Photo 19C

19. Exit any large bead (call it Bead 1) and orient your beadwork so that the 
thread is pointing away from you (up) as it exits Bead 1.  Pick up

not sew towards a triangle where you have already added beads (BCB).  
For example,  Figure 19 show that when exiting Bead 7, you could sew 
through Bead 8 or Bead 8*, but Bead 8 is a better choice.

When you are forced to enter a triangle that already has outer layer 
beads (as in Photo 19C), go to Step 20.  At this point, your bead work 
won’t hold its shape.  From this point on, use fairly tight tension as you 
weave.

Aside: You can use Infinity Weave to make any convex polyhedron in 
which every vertex has valence three, such as the truncated rhombic 
dodecahedron shown in the three photos below.
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Photo 20

Figure 20

Figure 21

Photo 21

20. Once you are forced to enter a triangle with outer layer 
beads (BCB) added, there are 2 possibilities for how this can 
happen.  Both are shown in Figure 20: either entering Bead 1 or 
Bead 9.  What is most likely, is you will sew through a bead like 
Bead 9, where there is no outer layer bead added directly after 
Bead 9.  In this case, pick up

You have two choices for which direction to sew, either towards 
Bead 5 or 6.  Figure 20 shows sewing towards Bead 5.  In either 
case, you will need to sew through 3 beads: 1 small color C 
bead, 1 large bead, 1 small color C bead. See also the upper 
middle triangle in Photo 20.

If there is a small outer layer bead directly after the large bead, 
as with Bead 1 in Figure 22, sew through the large bead and the 
small bead directly after it.  Pick up

Then, you only have 1 choice for which direction to sew: into 
the large bead that you have not yet passed through, as Bead 
2* in Figure 20.

Repeat Step 20 several times.  Eventually you will enter the 
beads in a triangle where only one color C bead needs to be 
added, as in Photo 20.  Go to Step 21.

21. From Bead 2*, sew through the small color B bead right 
after it, and pick up

Sew through the small color B bead and Bead 2.  The outer layer 

of beads should lie neatly over the 
inner layer.  You are finished when 
all triangles look like Figure 18.  Re-
peat Steps 19 to 21 as many times as 
needed to complete each triangle, 
tightening as you sew.

22.  If any your Infinity Bead is 
squishy and needs tightening, 
weave through the outer layer of 
beads (Lg, B, C) tightening as you 
go.  Complete the beaded bead by 
tying two half hitch knots in the 
same spot.  Then weave the thread 
through a few more beads, and cut 
all of the thread ends close to the 
beads.  Finish off the second end in 
this same way.

Figure 22: Half hitch knot
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Quasi-Crystal Pavilion
Akio Hizume

Artist
akio@starcage.org

http://www.starcage.org/

I designed huge Architecture based on the Penrose Tiling in 1990 on the same scale as The Saint Peter's Basilica, the 
Vatican. It was an imaginary quasi-periodic architecture because of too big scale. But last year, I re-design more 
compact pavilion under the same mathematical concept. Some of the proposals should be realized somewhere in the 
world before long.

0. The Goetheanum 3 : MATRIX of the six dimensional architecture (1990)
In 1990, I published architectural design called the Goetheanum 3. The figures below are just three of the 17 drawings 
by hand. It took more than four years to draw. This work follows through the pentagonal Penrose Tiling. I must handle 
six coordinate axes. There are a lot of novel forms of architecture in detail. Of course it is not realized yet. It is too 
huge scale to build today. Anyway I could success to prove that the Penrose Tiling  must be applied for architecture.
Recently a family of origami artist offered me to design a private museum in Japan. I accepted the request, and started 
to design. I extracted some elements of design from the Goetheanum 3, and reconstructed them compactly. Then I got 
four proposals like pavilion.  In general, successful pavilion must be prototype for the futural architecture. The 
Goetheanum 3 is its pregnant matrix. There are still a lot of possibilities.
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1. Gothic Type (2011)
First proposal called the Gothic Type. It should need several phase of construction. The first phase, there are only wall 
and flat slab. This structure was designed as flying buttress for the Goetheanum 3. 
Second phase, five towers cover the roof. The tower is also my invention called Fibonacci Tower which is based on 
the Phylotaxis. The Star Cage structures called Pleiades are hung from the top of each tower. The hanging Star Cage is 
not only symbol but also illumination and pendulum. It makes the tower stable against earthquake. 
Third phase, the biggest Fibonacci Tower covers the central court.
The structure can follows the method of Gothic Cathedral in medieval Europe but there is no square and right angle at 
all. If the Freemason still alive, they should construct this pavilion with pleasure I believe. The sound and light effect 
should be unique and beautiful.
I like this proposal best. In this occasion, it was not realized but it should be realized somewhere in the world because 
it is the mathematical destiny.

First PhasePlan

Second Phase Third Phase
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2. Rotonda Type (2011)
If the Renaissance Architect Andrea Palladio had known about the Penrose Tile, he should build such Pavilion I 
believe. That is why I call the proposal as the “Rotonda”.
The Rhombic Triacontahedral roof can cover on the pentagonal Penrose Tiling compatibly. I found it in 1986 then I 
started to design the Goetheanum 3. It was not always easy to find, but after the discovery, everybody may feel that it 
is very simple and elegant solution. 

3. Bookshelf Type (2011) 
The third proposal was only the bookshelves supports the flat roof as post. There is neither other post nor bearing 
wall. 
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4. Penta-Booth Type (2011)
Every Penta-Booth is not only bookshelf and display table, but also posts supporting the flat roof. The top of each 
Penta-Booths are connected by pentagonal basket structure that is also my invention called “GOMAGARI” in 1986. 
The Penta-Booths make exciting labyrinth based on the Penrose Tiling. I have built many such installation as an 
experimental city planning. The audience seemed to really enjoy living in such city temporary.
The clients like this proposal best. We decided the direction. But they prefer pitched roof to flat roof. So I must 
change design dynamically.

If Ludwig Mies van der Rohe had known about the Penrose Tiling, he might build such glass house.
The labyrinth of the bookshelves should be suitable for library or museum because many different fields of culture 
should encounter each other in such library, for example mathematician and artist. Compared to this, existing library 
seems to obstruct such interdisciplinary events I always feel. By the same token, the existing city design keeps people 
from interacting with each other. 
If Jorge Luis Borges had known this architecture,  he might wish to rewrite "The Library of Babel".
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5. The Latest Proposal (2012)
After surveying ground, I redesigned new proposal. The Penta-Booth labyrinth supports the decagonal platform. It is a 
kind of very stable artificial ground. I will make permanent exhibition there with sound and light controlled by 
computer with the quasi-periodic rhythm and metallic tone generated by the Golden Ratio. The labyrinth is not only 
permanent exhibit space but also residence room for gests.
The triple spiral Fibonacci Tower is placed on the platform. It is an open multi-purpose space. One lamp is hung from 
the top of tower as a pendulum, which makes the tower stable against earthquake. Just one lamp should be enough for 
the space because the roof structure perfectly diffusely reflects the light. There are some ways to cover roof. We might 
use some ORIGAMI technique.
I added new element on the latest proposal, that is, outdoor staircase based on the “Fibonacci Cascade” I called. 
Children and monkeys can't help shinning up, sitting and playing there. You can find the same staircase on the 
platform of the Goetheanum 3. Underneath the staircase there is utility room. 
On the gentle slope of natural ground, I will build the Democracy Steps based on the Fibonacci Lattice, that is, I built 
the same one in Tom Rodgers’ and Sarah Garvin’s garden in G4G8. Even the Democracy Steps was also contained in 
the Goetheanum 3 already. That is why the Goetheanum 3 is MATRIX.
The Quasi-Crystal Pavilion is literally a quasi-crystal of the Golden Ratio. There is nothing except the Golden Ratio.
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My Fractal Tool 
Masayoshi Iwai 

Academy of Recreational Mathematics, Japan (ARM, Japan) 

 

Although "Mandelbrot set” and "IFS code" are conventional methods for generating 

fractal patterns, they are too artificial. 

 

I wanted to draw realistic and funny fractal patterns easily, and succeeded in designing 

a convenient tool for generating fractal patterns from graphics files on a PC. 

 

The outline of the program will be explained with several examples. 

 

 

Although “Mandelbrot set” and “IFS code” are conventional methods for generating 
 

 
I wanted to draw realistic and funny fractal patterns easily, and succeeding in designing 

 
 

Masayoshi Iwai 
Academy of Recreational Mathematics, Japan (ARM, Japan)

My Fractal Tool
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My G4G10 Exchange Item 
  
Masayoshi Iwai 
http://ch.cri-mw.co.jp/iwai/ 
http://www.facebook.com/masaka.iwai 
 
 
This zip includes the drawing tool and its codes. 
 

 
http://masaka.up.seesaa.net/image/g4g10iwaihtm.htm 

 
 
The drawing tool is used for my G4G10 Talk “Kite Spiral”. 
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It’s Not Music, It’s Theory

Hilarie K. Orman

Abstract

Can the geometry of a 3D object be represented in music? These experiments in assigning
musical notes to the faces of polyhedra and interpreting the result as scales and chords show
that the problem has only partial solutions. The study suggests a more general problem in
graph theory, similar to coloring.

1 Introduction

The structure of music has some mathematical properties, but do mathematical structures have
musical properties? Can geometric symmetry in 3 dimensions be translated to music? These
are the questions that motivated this work.

Linear mathematical structures like arithmetic sequences have been investigated by some
composers, and the recent popularity of “π day” is perhaps responsible for several interpretations
of the digits as musical notes or chords. On the other hand, two or three dimensions seem more
difficult to represent.

This work focused on representing two particular Platonic solids with musical tones. The
goal was to create something with a faithful interpretation of the geometry and to convey the
visual symmetry through some kind of tonal symmetry. The secondary goal was to make a short,
playable piece of music that sounded, if not exactly nice, at least not too awful. A tertiary goal
was to discover something interesting about music structure.

Of the 5 Platonic solids, the octahedron and the dodecahedron are interesting targets for
tonal interpretation because the octahedron has 8 faces and there are 8 tones in the usualmusical
scale (7 tones plus one an octave higher than the base) and the dodecahedron’s 12 faces suggest
the 12-tone scale on which most Western music is based.

2 Note = Face, Scale = Adjacent Faces, Chord = Vertex

The strategy we adopted was to assign a note to each face and to interpret the faces musically
as the ordered set of tones on adjacent faces. Vertices were interpreted as chords determined by
the notes assigned to the faces meeting at the vertex.

The first question we asked was whether or not it was possible to find an assignment of notes
that would let each face have a scale with the same intervals. A computer program was set to
work searching all assignments of notes to faces, eliminating those that had “bad” chords or
“dissimilar” scales. For the octahedron, the scale was C major, for the dodecahedron the scale
was the 12-tone.

Scales are similar if they have the same inter-note intervals. The pentatonic scale “C D E
G A” has intervals (deltas) “2 2 3 2”. There are pentatonic “modes” based on other intervals,
particularly the pentatonic minor: “C - Eb - F - G - Bb” (3 3 2 3). Our search criteria did
not dictate any particular interval set, but it did look for assignments that results in the same
interval set (allowing permutations) for each face. We excluded assignments that had more than
one semitone (interval 1), because these sequences were likely to sound dissonant and would not
be recognizable as scale sequences. A further criteria was that the vertices (chords) should not
have semitone or tritone (5) intervals, because these sound very dissonant.
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Face Assignments Vertex Chords

a d f

e c g

c e b

c b g

d a c+

e g b

a f c+

f d c+

d e c+ b

f g c+ b

a g e c+

c a f g

c d f b

c a d e

Figure 1: Octahedron Tones

A (nearly) complete search on the assignment space yielded no results for either the octa-
hedron or the dodecahedron. The octahedron failed on the chord criteria (there are 4 notes in
an octahedron chord, but only three in a face scale), and the dodecahedron failed on the scale
criteria (the pentatonic scales have 5 notes). We absorbed this disappointment and loosened
the criteria to allow more dissonnance.

By allowing one semitone into chords, we were able to get solutions for the octahedron that
included some similar scales, illustrated below. The 3-note scales are reasonably musical, but
the chords are jarring. The results can be heard via [6] and [5] .

For the dodecahedron, by defining scales as similar if the absolute values of the adjacent tones
yielded some identical subsequences, we were able to find an assignment for the dodecahedron
that contained some scale similarities. This is illustrated in the table below (we simplified the
dodecahedron search by assigning C# to the face opposite the C face). The interval sequence
“6 4 6 4 4” occurs twice (faces 1 and 12), the subsequence “3 4 3” occurs 5 times, “7 6 7” twice,
and “7 6 3” twice.

Figure 2: Octahedron Figure 3: Dodecahedron
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Dodecahedron Tones
Face Scales

a# e g# d f#

c f# d# g e

c a# g b g#

c e b f d

c g# f a f#

c d a d# a#

c# g a# f# a

c# b e a# d#

c# f g# e g

c# a d g# b

c# d# f# d f

a f b g d#

Vertex Chords

c# f a e g b

c# f b e g# a#

c# g b d# g# a#

c# d# a d# f# a#

c# d# g c f# a#

d# f# a c d f#

d f# a c d g#

d f g# c e g#

f g# b c e a#

e g# b

3 Prior Work

Mappings of number sequences to tones or chords are a popular feature of mathematical shows,
and at least one is online [2]. There are a few serious musical pieces based on dodecahedrons,
and one, by Joceyln Ho, is available on YouTube [4]; there is also a paper about the composition
[3]. An interesting assignment of notes to the faces of a rhombic dodecahedron and pentatonic
scale relationship is the subject of part of a book [1].

4 Mathematical Generalization

Wemight ask if there are other polyhedra that aremore amenable tomusical assignments, noting
that solutions build on the well-known graph coloring problem. We could define a “numbering”
for a polyhedron G from a set S by assigning elements of S to faces of G with the conditions
that (1) every element of S is assigned to at least one face of G (2) no two adjacent sides have
the same member of S, and (3) no vertex has two or more faces with the same member of S. A
face scale for face F is the ordered sequence of members of S on faces adjacent to F.

For the musical problem, we wanted all face scales to be similar and all vertex sets to be
“musical”. The musical constraints limited the set of possible face scales. Which constraints
can be satisfied with for a given G and S?
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ANTI – G 
 I begin by noting that although Scot Morris has said nothing 
this year about the letter “G”, had he said anything, it would have 
been a bunch of crap!  Or as I would prefer – “a bunch of 
garbage.” 

 At G4G7 I spoke out against not just the number “7”, but all 
numbers and then said I would have nothing more to say anti-
number.  Much to everyone’s surprise, including my own, I have 
kept my word.  I have remained silent, which is more than Scot 
has been able to do!  But I can no longer do so.  There is a 
scourge in the land and it all relates to the alphabet.  Wherever 
there is a problem, the problem is spelled with letters.  Problem 
begins with P and that rhymes with T and that stands for Trouble [ 
or Talk, meaning this one.]   Clearly, if there were no alphabet, we 
could not spell anything and there would be no problems.  I could 
have chosen any letter to speak against, but since we are here for 
G4G10, I have decided to speak out against the letter “G.” 

 “G” is the seventh letter of the alphabet, so I’d like to 
incorporate herein by reference, every nasty thing I said about “7” 
in my prior “Anti-7” talk.  Please see the G4G7 handouts for 
details1. 

 Interestingly, or at least I hope so, “G” is one of the many 
letters of the alphabet that is also a word.  But what a dumb word 
– “Gee,” as in Gee wilikers, Gee whiz, or Golly gee.  Try saying 
one of those while seeming to maintain any IQ of over 80.  For 
those of you willing to admit to any IQ of less than 80, I 
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recommend incorporating some of those expressions.  They will 
make you seem smarter. 

 I know “G”2 is a somewhat controversial choice for an “anti” 
lecture, for are we not here to celebrate Martin Gardner, in the 
state of Georgia?  Not only has G-d chosen “G” for an initial, but it 
is clear how his son’s name, Jesus, should have been spelled!   
But, if you’re going to go for it, start with the hard one! 

 Normally, I include at least one fancy, but meaningless, 
mathematical formula in these talks, but that would seem 
pointless with G.  However I do happen to have one equation left 
over from prior talks, so I’m going to toss it in here just to use up a 
power point slide.  

G = [ *  ^ ] / [ *  ^ ]*  
 Of some interest I think, is that all these symbols represent 
“G” in some language or script. 

 Obviously I would have almost endless potential examples of 
what a terrible letter “G” is, if I were to use words or names that 
contain “G”, or even those that start with “G.”3  So to be sporting I 
will be primarily using only examples with “G” as a significant 
initial. 
 “G” has many uses in everyday language. 

 G represents Gravity – talk about something that will bring 
you down. 

The expression G-men4 referred to FBI agents.  FBI has 
three perfectly good initials, why G would be used for FBI is 
beyond me. 

 

4G  –  Life was much better when I could just make up facts, state 
them with authority and be believed.  Now someone always has a 
4G phone to Google the subject and find the real answer.  It’s just 
not worth making up stuff anymore. 
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Gmail  –  If it were not for Gmail those kind Nigerian princes would 
not be waiting for me with the many millions of dollars they have 
decided to give me for somewhat unclear reasons.  Gmail has 
also often brought me the good news that I have won a lottery I 
did not enter.  By next year I will be rich.  Rich!  I tell you5. 

G–String  –  A terrible misogynist bit of clothing used only to tempt 
men from the straight and narrow path.  It is detestable and a 
cause for disgust.  Here is a photograph from the Internet.  Let’s 
take just a few moments to be repulsed.  [Pause]  [PowerPoint 
slide]  

G–Line subway in NYC  –  Goes from Court St. to Church St.  
Who cares? 

G Sharp  –  Do we really need it?  No, seriously, do we really 
need it?  I can’t tell. 

G  –  in Morse code  –  “ - - .”  No comment, just thought it might 
come in handy someday. 

G  –  in Braille –  “::“   See above comment.   

G spot  –  I’m a little uncomfortable with this one, for I don’t even 
believe it exists, but if any woman feels differently I am not going 
to debate it.  I will only say that if it does exist, it just isn’t worth 
the effort to find it. 

F*****G   –   Not really a “G” word, but I’m just proving I don’t spell 
very well. 

“G–Force”  –   It may not be the worst movie ever made, but it is 
surely the worst movie ever made featuring Guinea Pigs 

Kenny G  –  Please insert your own jokes. 

G’Day  –  This is Australian6 for “I’m trying to sound like an 
Australian.”  We could do without it. 

g = gram  –  You’d think this is just another harmless 
measurement of weight, but I’ve never known anyone to use it for 
anything other than selling illegal drugs. 

G20 economic group  –  you can see how well that’s working. 
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Warren G. Harding  –  Try and find him on a list of our great 
presidents. 

G. Gordon Liddy  –  A man so strange that he once tried to pick 
up a woman by burning his palm over a candle, then he bragged 
about it. 

Susan G. Komen  –  Honestly, I would never have thought of 
including her, but I have strong feelings vis-a-vis Planned 
Parenthood, so in she goes. 

GOP  –  I’m not going to push this one, but as I’ve already said, I 
have some strong feelings. 

G. I. Joe  –  Amazingly, he is NOT a real American hero.  Like my 
talk, they just made him up. 

Burton G. Malkiel – A very famous economist, which means no 
one has heard of him, but he once taught a class I was in so he 
gets included. 

G  –  The movie rating.  A guarantee that not even your children 
will enjoy the film. 

Jihad  –  G is such a terrible letter that even Jihadists refuse to 
spell their name correctly.  

Anti-G Program -   It is not enough to just explain the evils of “G,” 
but I have a seven step [A-G] program to greatly reduce the use 
of “G” in our society. 

 [A]  Make sure you never go to Gabon, Gambia, Germany, 
Ghana, Greece, Grenada, Guatemala, Guinea,  Guinea Bissau, 
or Guyana. 
 

 

   [B]  Learn to spell without the forbidden letter.  “J” will usually 
work as a substitute.  Besides, Wildebeest sounds much better. 

 [C]  Gonorrhea – Try to avoid it.  If you must have an STD, 
there are many other choices.   

 [D]  Avoid politicians with G names.  I mean Gingrich? 
Really, Gingrich?  [That line was much funnier when I wrote it in 
December.]  
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 [E]  Never Gerrymander, even if you have to Google it just to 
figure out what it is, so you can avoid it. 

 [F]  Teach your children to spit whenever they hear the letter 
“G.”  Please also teach them to clean up afterwards, just in case 
I’m nearby. 

 [G] This is not just the last step, but it is by far the most 
important!  We must . . .   Oh, I’m sorry; I see my time is up.  
Thank you. 

 

  

                                                
1 G4G7 Exchange Book – Vol. 2, page 294 
2 The Really Big Book of “G.” 
3 The Oxford English Dictonary – Special edition without the letter G. 
4 The Big Book of Sounding Tough. 
5 I mean, why would a Nigerian lie to me? 
6 See “Australian for the rest of us.” 
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Twas the Night Before Gardner 
T. Arthur Terlep 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Twas the night before Gardner, when all through the Ritz 
Every a Gatherer was stirring, for registration blitz. 

The name tags were hung o’er every neck with care, 
In hopes that the bar bets soon would be there. 

 
The guests then nestled all snug in their beds, 

While visions of polyhedra danced in their heads. 
With Setteducati in his suit, and Bruce in his cap, 

The planners began for a great week’s hap. 
 

When up on the stage, there arose such a clatter, 
I woke from my seat to see the Mad Hatter! 

Counting off days, he went like a flash, 
And informed us acutely of a Doomsday bash. 

 
The moon in the sky, so often in tow 

I couldn’t count time in the basement below. 
When, what to the back of my eyes straying nerves, 

But a two headed hyper fowl swimming space-filling curves. 
 

Then a bundle of cards, he arrived on the scene, 
I knew in a moment, it must be Lennart Green. 

More quickly than quarks, his colleagues engaged. 
Fooled though I was of the illusions they staged! 

 
"Now Magic! now, Puzzles! now, Science and Math Games! 
On, Music! On, Knitting! On, on Sculptures by big Names! 

To the top of the stand! In front of us all! 
Present away! Dash away! Go eat lunch at the mall!" 

 
To Tom’s house we came, very grateful at this, 

Wishing him well, this great man we miss. 
But up near the house, my Go game near through, 

I watched from afar as the geometric structures grew. 
 

When then, for a moment, I heard a Hart sing 
While we some sipped sake through bamboo cut ring. 

As we tuned to the taps, my meter turned ‘round, 
And was sad to find out, the last bus was due bound. 

The exchange room was filled, from the door to the wall, 
While Thane kept quite calm, despite din in the hall. 

A bundle of Toys I had flung on my back, 
And I refilled my suitcase, just so I could pack! 

 
Then stones-how they twinkled! My Goban so merry! 

His groups were like boas, his shapes didn’t tarry! 
I recall that my loss was drawn up on this Go, 

And Berlekamp’s count confirmed what I know. 
 

Later Dennis plied pipes and bent pans in his grip, 
And phonebooks likes leaves flew out from a rip. 

We thought he was fake, before bowling ball belly, 
And twisting horseshoes, like Dunkin’ Donuts filled with 

jelly! 
 

Strick said “Let’s dine!” At the Sundial we all ate 
But I like a rabbit cried “I’m going to be late!” 

These friends newly found and this gathering I was at 
Inspired me to write this “Twinkle, Twinkle, Little Bat.” 

 
As I set down these words, my gift exchange work, 

My timeline’s askew; my meter’s a-jerk. 
But illusionists said that your memory’s a farce, 
So in judging this, well, I hope you’re as sparse! 

 
And now, time to go, I ran for my train, 

As days’ past events brewed coffee bubbled brain. 
But I heard Martin say, as I rode out of sight, 

"Happy Snark hunting to all, and to all a good flight!" 
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Another Chess Mystery of Sherlock Holmes 
 
Holmes had been very despondent for some weeks, and was looking even more gaunt than usual.  
For lack of any other idea, I practically forced him out of bed and made him accompany me to 
the chess club.  Holmes was rather fond of peculiar chess puzzles, and I hoped that we might run 
across a game of interest to him.  You may have read about some of these puzzles in the book 
“The Chess Mysteries of Sherlock Holmes,” by Raymond Smullyan.  Holmes had no interest in 
actually playing the game, but he took pleasure in trying to deduce all the logical possibilities 
regarding both past and future moves related to unusual chess positions.   
 
When we arrived at the club, there were several tables laid out with chess pieces, but one caught 
our attention immediately, because a game seemed to be in progress, yet the table was aban-
doned. We sat down as follows: 

         
Holmes 

 
 
 
                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Watson 
 
[white pieces: pawns on b6, c2, and h2; rook on a1, knight on a2, bishop on b1, queen on c1, 
king on h1;  black pieces: pawns on b7, c6, d5, c3, h3; rooks on f8, g7; bishops on d4, d7; knight 
on e2; king on a8.] 
I studied the position carefully, but Holmes appeared distracted and seemed to pay no attention.  
Soon I exclaimed, “Holmes, I declare that I can  checkmate you in three moves.”  Holmes sighed 
and peered at the board for a minute.  “Watson, are you entirely sure of your claim?”  “Why, 
yes,” I said.  “Let me show you.”  Playing White, and with Holmes playing Black, the game pro-
ceeded as follows:  
 
1.  Q-a3         1...K-b8 
2.  Q-a7ch.     2...K-c8 
3.  Q-a8 mate 

Author: Jerry Butters
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“You see, Holmes,” I said triumphantly.  “Surely there is nothing you could have done to prevent 
this checkmate.”  “Well, yes, I suppose you are right, Watson,” he replied, “at least from a cer-
tain philosophical point of view.  But yet I am not entirely convinced.”   
 
Before I could ask Holmes to explain this strange remark, two gentlemen joined us at the table, 
our old friends Colonel Marston and Sir Reginald Owen.  “Ah, Holmes, I haven’t seen you at the 
club for some time,” said the Colonel in greeting, “and your friend Watson as well.  What do 
think of our game?  I do believe I have the upper hand, would you not admit, Sir Reginald, de-
spite the disadvantage of playing with the black pieces?   “Yes, I confess that you are right,” he 
replied, “but I have only been playing seriously for last few moves, and once having fallen be-
hind, there was little I could do to salvage the situation.” 
 
At this point, Holmes interjected: “Marston, I see that you and Sir Reginald have been playing 
one of your highly unorthodox games.”   
 
“Why, yes, I do admit that we have not been playing in a conventional manner.  Perhaps you de-
duced that from the unusual placement of Sir Reginald’s bishop.  Sometimes we play just to ex-
plore the many possibilities inherent in the game, without regard to who wins or loses, but we 
always adhere strictly to the rules.”  
 
Holmes continued:  “But I quite agree with you, Marston, that you are in control of the position.  
As it is clear to see, you can force a checkmate in only three moves.”   
 
“But Holmes,” I whispered hurriedly, did you not hear that Marston is Black?  It is White that 
can checkmate in three, not Black.  It appeared to me that Holmes’ depression must be deeper 
than ever to cause him uncharacteristically to pay so little attention to detail.  Unfortunately, the 
Colonel overheard my rebuke, for he joined in by saying, “I do believe that Watson is correct, for 
even though it is my turn to move, I can see no way that I can force checkmate is less than 5 
moves.”  And, indeed, neither could Sir Reginald nor I. 
 
To my chagrin, Holmes did not concede his error.  “You may not see the solution, said Holmes, 
but it is plain to see right there in front of you.”  “In that case, replied Colonel Marston, surely 
you would accept a wager.  If you convince us you are right, I will pay you one pound, but if you 
are wrong, you must come to the club tomorrow and take us all out to dinner.”  As he finished 
speaking, he gave a slight wink in my direction.  Surely the Colonel had recognized my friend’s 
deteriorated condition and was trying to help me draw him back into a more normal manner of 
living.  
 
Taking no notice, Holmes responded to the challenge.  “Very well, I accept, but I do not wish to 
take unfair advantage of you.  First we must be very clear about the terms of our wager.  I win if 
I can demonstrate that Black can play in such a way that the game will end before he needs to 
play four moves.  It might end in three moves, and it might end sooner.  In any case, the result 
will be checkmate.” 
 
“Nothing could be clearer,” agreed the Colonel.  You may take the black pieces, then, and I will 
take White, and let us see if you can finish the game in less than four moves.  “It is your move.” 
“But wait, you agree not to resign before the four moves are up?” 
 
“Most certainly,” said Holmes, “both players must continue to play for four moves, as long as it 
is possible.”   
 
Holmes moved his hand towards the rook on his bottom rank, hesitated for a moment, and then 
placed it back in his lap.  “There is a slight problem,” he said.  I am not certain how to play.”  
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“You may have all the time you wish,” said the Colonel, “as I have nothing else to do this after-
noon.”  “No, you do not understand,” said Holmes.  It is not a question of time.  It is just that I do 
not know for certain how I should play.  “In that case,” said Sir Reginald “surely you must con-
cede defeat.  If you do not know how to play, and if time will not help you, then there is no alter-
native.” 
 
“I most assuredly do not concede defeat,” said Holmes.  “I can prove that Black can play and 
force mate in three moves, and yet I cannot yet be certain exactly how it can be done.” 
 
At this point, I could not restrain myself from exclaiming, “But Holmes, surely that is impossi-
ble.  I have heard that in the realm of higher mathematics, it can sometimes be possible to prove 
that a solution to an equation is possible even though one can not solve for the exact result.  But 
surely nothing of the sort could occur in a simple game.  Why, there are only a finite number of 
possibilities, and surely we could check out all of them.”   
 
“That is true, Watson,” said Holmes, “but nonetheless your conclusion does not follow.  Perhaps 
it would help explain the situation if I let you finish your game, and we could continue this dis-
cussion later.”  
 
All three of us stared at Holmes without knowing what to say.  I will admit that he looked more 
like his old self.  He was sitting up straighter and looked at each of us in turn with a twinkle in 
his eye, and yet his proposal was so unreasonable that I wondered if this time he was really going 
insane.  Did he really hope that by observing our play we would somehow discover a solution 
that he had missed, and none of us could see?  Or was he simply stalling for time? 
 
Nonetheless, without even sitting down, the Colonel and Sir Reginald proceeded to finish their 
game, as follows: 
 
                               1....  NxQ 
2.   NxN check        2....  K-b8 
3.   R-a8 check        3....  KxR 
4.   N-e2                  4.... R-f1check 
5.   N-g1                  5.... Rxg1 mate 
 
“I am sorry, Holmes,” said the Colonel generously, “but in truth I did my best and I don’t see 
how I could have made the game shorter, given White’s various threats.” 
 
“Not at all, Marston,” replied Holmes, with assurance.  “For now I know how to play.”  Replac-
ing the pieces to their previous position, Holmes began with: 
 
                1.... R-b8 
 
“It is your turn, Marston.” 
 
“But Holmes, how could you possibly hope to cause a checkmate by retreating your rook into the 
corner,” I cried.  And before I had quite finished, Marston added, “Really, Holmes, in fairness I 
must allow you to retract that move, because by hemming in your own king, you are allowing me 
to win immediately just by moving my knight.  Your king will have nowhere to escape the dis-
covered check from my rook!”   
 
After a moment, Sir Reginald began to laugh.  I was embarrassed beyond words.  How could he 
triumph so at Holmes’ humiliation?   Maybe he was not aware of Holmes’ unusual condition, 
and smarted from previous occasions when Holmes had proven us all wrong.   
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“But don’t you see, Marston,” said Sir Reginald, you really can’t move your knight!  That is, if 
you did move your knight, you would checkmate Black, and the game would not last for 4 
moves.  You might win the game, but you would lose your bet!” 
 
“And why would I lose the bet?” demanded Marston.  "Holmes said he would checkmate me in 
under four moves, not let me checkmate him!" 
 
“No, you are wrong,” said Sir Reginald.  “Holmes gave you fair warning.  He said the game 
would end in checkmate.  He didn’t say anything about who would checkmate the other!  If you 
reflect upon his words, you will realize that he spoke them very carefully and very precisely.”  
 
“In any case, I have not lost the bet, because I have not played yet, and nobody has yet check-
mated the other,” said Marston, somewhat louder than necessary.  And after thinking for a while, 
he played, and continued, as follow: 
 
2.  Q-e1    2.... R-g1 check 
3.  QxR     3.... BxQ 
 
“Now you must admit defeat, Holmes,” I said, “because you have played your third move, and 
you have not even placed White in check.   
 
“Not so,” said Sir Reginald.  “For it is still White’s move.  And White is still able to checkmate 
Black.  And, more to the point, White must checkmate Black.  For the only piece White has left 
that can move is his knight,...” 
 
4.  N-anywhere, mate 
 
“... and he must make a move, because Marston himself insisted that the game could not be cut 
short by resignation!  So Holmes wins the bet.” 
 
And so, after some more discussion, Marston and I had to agree with Sir Reginald.  
 
Holmes had for some time been quiet.  But finally he spoke up, and to our astonishment, said:  
“Really, gentlemen, you are conceding defeat all too easily.  For I have not yet proved my case.  
I have merely demonstrated one half of the necessary argument.  Do you not wonder why I wait-
ed until you finished your game to play out one variation?” 
 
“Why, yes, I do wonder why you created such an air of mystery,” said Colonel Marston, “and 
pretended not to know how to play, when all the time you knew full well how to proceed.” 
 
“I will admit,” said Holmes, that I did see foresee that line of play, “but until I saw how you fin-
ished your game, I could not be sure that it was the right way to play.”  “You see, coming upon 
your game in the middle placed me at a disadvantage, for I did not know what had proceeded 
before.  In particular,... 
 
“But Holmes,” I interrupted, “I don’t see how the preceding play could possibly be relevant.  
And even if it were relevant, what possible help would it be to observe a future line of play?” 
 
At this point Marston interposed thoughtfully, “Well, I do see how the preceding line of play 
could sometimes be relevant.  For example, in some positions it is not clear whether a player has 
the ability to castle or not, because we can’t tell whether the player’s king or rook has been pre-
viously moved.  But I don’t see anything of this sort in our particular game.  Let us hear what 
Holmes has to say.” 
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“I really did not intend to be so circuitous,” said Holmes.  “But the future often tells us some-
thing about the past, just as the past tells us something about the future.  Perhaps I should have 
asked directly about the past moves.  For example, I could have asked you, Marston, whether 
you indeed made a capture with your pawn on h3 as your last move before the position we found 
when we arrived.” 
 
“Yes, as a matter of fact, I did make such a capture,” said Marston.   
 
Losing patience once again, I burst in and said, “But Holmes, how could you possibly know 
that? And what does that have to do with the checkmate?  You are piling mysteries upon myster-
ies!” 
 
“One thing at a time, Watson,” Holmes said patiently.  “Marston has accused me of prolonging 
the mystery, but each question of yours diverts me further from the explanation.”  Chastened, I 
resolved not to say anything more until Holmes finished. 
 
“As for the pawn capture, Watson, that is really quite elementary.  Sir Reginald assured us that in 
his last moves he was sincerely trying to play well.  But White was the last to play in the position 
we found.  What was White’s last move?  Why did Sir Reginald leave his queen where it could 
be captured by the knight?  Indeed, why didn’t he begin the checkmate sequence you found so 
quickly when we arrived?   The only reasonable explanation was that a more important piece was 
at stake, his king.  His king must have been in check, and he must have moved his king out of 
check.  Where could it have come from?  Not from g1, because the square g1 is in check from 
three pieces, the knight on e2, the bishop on d4, and the rook on g7.  That is impossible: there is 
no way black could have moved so as to simultaneously place white in check in three different 
ways.  So, white must have moved his king from g2 to h1.  Now, what was black’s move prior to 
that?” 
 
Sir Reginald was first to reply: “Yes, when white’s king was on g2, it was in double check, from 
the pawn on h3 and the rook on g7, and the only way this could have happened was for the pawn 
to have made a capture, moving from its previous position on g4 and exposing the king to check 
from the rook, as well as administering a check of its own.  By why, then, did you need to ask? 
 
“Because that is not the only other possibility,” said Holmes.  There is one more.  Or to be pre-
cise, there are several more, all of a similar nature.” 
 
“Really, Holmes, this is too much,” I protested.  There can be no other possibility.  Black can’t 
have moved two pieces at once.  His pawn can’t have captured starting from a different square.  
White’s king can’t have moved from h2, because he can’t share the square with his own pawn!”   
 
“But yet, there is another possibility,” said Holmes.  “Perhaps you are forgetting how little we 
knew when we entered the room.  We did not know what moves had gone before.  We learned 
who the players were, who played White, and who played Black,” (and as he said this, if  I am 
not mistaken, he fixed me with his gaze for a moment longer than usual), “but we did not even 
learn where they were sitting as they played.”    
 
“What could one possibly learn from that?” I cried out. 
 
“Yes, Watson, what could one learn from that?  Where do you normally sit when you play 
chess?” 
 
“I sit on the white side, if I am playing white, and on the black side, if I am playing black.” 
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“Quite so.” 
 
“For example, I am now sitting on the white side, and you are sitting on the black side.” 
 
“Yes, we know that now.  But we didn’t know that before.” 
 
“How can you say that.  Isn’t it obvious merely from the position that the white pieces are on my 
side, and the black pieces are on your side?   
 
“Not necessarily,” said Colonel Marston.  “After all, some of the black pieces: the knight and 
bishop, and two pawns are on your side now, and one of the white pawns is on Holmes’ side.  It 
is evident that the pieces are able to move about.  How do you know where the pieces were at the 
beginning of the game?  As Holmes said, you didn’t see the beginning of the game.”   
 
“But my side must be the white side,” I insisted.  “Are you trying to tell me that the white pieces 
could have begun on your side of the board, Holmes, and marched down to my side, while my 
pieces marched over to your side, and they all politely stayed out of each others’ way, except for 
a few, mostly pawns, that were captured, and that Black has three pawns almost ready to be 
queened, but has considerately refrained from doing so? 
 
“Exactly, Watson.  That is just what I have been thinking.  It may seem wildly improbable, but it 
not impossible.  For example, the pawns could have side-stepped one another by capturing and 
changing files.” 
 
“But it is truly impossible, Holmes, because the final position reached by Marston and Sir Re-
ginald would not be a checkmate if the white pieces began at your side of the board.  In that case, 
the white pawn on h2 could move backwards, so to speak, to capture the rook on g1!” 
 
“Capital, Watson!” cried Holmes.  “That is exactly how I reasoned.  That is why I did not know 
how to play until I saw the completion of the game.  Only then did I know for certain in which 
the direction the pawns were allowed to move.” 
 
Once this mystery was cleared up, we were able to resolve all of the remaining problems.  Mars-
ton was first to discover the other half of Holmes’ proof.   Assuming that white moves from top 
to bottom in the diagram, there is only one way black can checkmate in 3, as follows: 
 
1....  N-g3 check  (the white pawn now can’t capture the knight!) 
2.   K-g2    (the king is not under attack from black’s pawn on a3, which is moving up the 
board!)                   2....  R-f2 check  
3.  K-g1  
3....  R-d2, discovered check and mate.   
  
Sir Reginald pointed out why Holmes’ first line of play would have failed if White had been  
moving down the board.  After 1...R-b8, and  2...R-g1 check, White could have defended with 3. 
PxR (promotes to queen), and when Black captures the new queen, White still has the old queen 
to play (and also the pawn on c7, which could queen on c8) and therefore is not forced to check-
mate Black.   
 
And I then chimed in: “Now I understand your other point, Holmes!  As you explained, White’s 
previous move, starting from the position we first saw, was to move the king from g2 to h1, but 
when the white king was on g2, it might have been in check only from the rook on f8, because 
the black pawn on a3 might have been moving up the board, not downward as I presumed.  In 
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that case, black’s previous move could have been a move with its rook, ending on g7, to deliver 
the check.” 
 
“But Holmes,” added Marston, “why are you so sure that White’s previous move was a king 
move?  Perhaps instead white moved the white queen to c1, a possibility you did not cover in 
your explanation.  That move might not have been such a blunder as it seems, because perhaps 
white captured a black piece that was previously on c1, maybe even Black’s queen.  And Black’s 
queen might have itself just captured a white piece on c1, perhaps a rook.   
 
“Indeed, you are quite right.  That is also possible,” conceded Holmes, “but in that case, would 
not Sir Reginald have captured the black queen on c1 with his knight on a2, thereby safeguarding 
his own queen and administering a check on your king?  Sir Reginald has assured us he was 
playing his best at the end, and with this move, he could have turned the tables on you, so to 
speak.” 
 
“And now gentleman, I hope you will all join me for dinner tomorrow night, for I can think of 
nothing better on which to spend the pound I have just won from Marston.  I know that you all 
have been concerned about my health, but I assure you that nothing is wrong with me, and our 
afternoon together has quite lifted my spirits.” 
 
We were all so pleased that we quite forgot to be annoyed with Holmes for making such a mys-
tery out of the simple but far-fetched notion that the original position did not reveal the direction 
in which the pawns could move.  I myself have recounted this story as I have merely due to my 
desire to convey the events as faithfully and truthfully as possible.   
 
It was only later that I remember the moment we first arrived at the club, when I had displayed 
my checkmate in three moves for White.  What had Holmes meant when he said I was that I was 
right only in a philosophical sense?  Upon reflection, I realized that if White had been moving 
from top to bottom, then my move 2. Q-a7 check would fail, as Holmes could have responded 
with 2…KxQ!  Or, if I had tried instead, 2. Q-d6 check, followed by 3. Q-c7 check, it would 
have still met 3… KxQ, since in both cases the pawn on b6, moving down the board, no longer 
guards the Queen.   
 
But there is indeed another sense in which I was right.  Sitting as I was on the “South” side of the 
board, as long as it was my move, I could indeed win by checkmate in 3 moves.  There are two 
possible cases.  In the first case, the white pieces are moving upwards on the board, as I had pre-
sumed, and I was playing white, and my checkmate was valid.  In the second case, the black 
pieces are moving upwards on the board, and sitting South, I should have played the black pieces 
instead of white!  But then I still had a forced checkmate in 3, using the moves demonstrated by 
Marston.  But I would have faced the same dilemma as Holmes.  Even though I could have truth-
fully asserted (and, unwittingly, did assert) that I could checkmate Holmes in 3 moves, I would 
not have known how to do so, because I would not have known whether to play White or Black!  
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Factor Subtractor

by

Barry Cipra

bcipra@rconnect.com

Factor Subtractor is a game played with numbers.  It is intended 

to reinforce basic skills in arithmetic while offering something 

of interest to professional (or amateur) mathematicians.  It can 

be played on paper, at the blackboard, or even, depending on the 

players' facility with mental arithmetic, aloud, for example 

during a car trip.

The games start with one player factoring a large number, such 

as 100, as the product of two smaller numbers, such as 4x25 or 

5x20.  Play then proceeds with the players taking turns as 

follows.  When it's your turn, you pick one of the two factors, 

subtract it from the product, and then factor the resulting 

difference, again as the product of two numbers.  For example, 

suppose player A starts by factoring 100 = 4x25.  The game might 

proceed as follows:

B:  100-4 = 96 = 8x12

A:  96-12 = 84 = 6x14

B:  84-14 = 70 = 2x35

A:  70-2 = 68 = 4x17

You might have noticed, we haven't said what the object of the 

game is, i.e., how to win it.  But note that the numbers being 

factored are getting smaller and smaller.  So eventually we're 

going to run out of numbers.  And that's the object:  To be the 

player to reach 0.  Let's see how this might play out by 

continuing the game above:

B:  68-17 = 51 = 3x17

A:  51-3 = 48 = 6x8

B:  48-8 = 40 = 4x10

A:  40-10 = 30 = 2x15

B:  30-15 = 15 = 3x5

A:  15-5 = 10 = 2x5

B:  10-2 = 8 = 2x4
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A:  8-4 = 4 = 2x2

B:  4-2 = 2 = 1x2

A:  2-2 = 0

so player A wins.  It didn't have to end that way.  It turns 

out, each player in this example made a couple of "bad" plays.  

The last one occurred when player B subtracted 15 from 30 

instead of 2.  Let's see why this is.

The secret lies in the sequence

4,9,10,14,16,18,22,25,26,28,30,34,36,40,46,48,49,54,55,56,62,63,

65,66,68,74,75,76,80,81,84,88,90,94,96,....

The list goes on and on; these are the one- and two-digit 

"target" numbers for the subtraction step, for a which a player 

can pick a factorization that guarantees a win.  Notice that 15 

is not on the list, but 28 is.  Therefore, player B should have 

played 30-2=28 instead of 30-15=15 after A had offered 30=2x15.  

Had he chosen the better number to subtract, B needed to factor 

28 as 4x7, because neither 28-4=24 nor 28-7=21 is on the list.  

(The factorization 2x14 would have been a mistake, because it 

would allow player A to get to either 28-2=26 or 28-14=14, both 

of which are on the list.)  

You may notice that 30 is also on the list.  This means that 

player A actually made a mistake in factoring it as 2x15.  The 

"correct" move would have been 30=3x10, since neither 30-3=27 

nor 30-10=20 is on the list.  For that matter, player B made a 

mistake early on, factoring 96, which is on the list, as 8x12 

instead of 4x24; doing so allowed player A to get back on the 

list, whereas neither 92 nor 72 would have been.

So where did this list come from?  The short answer is, 

recursive computation.  The list, along with its complementary 

list of "losing" numbers, is built starting at 1.  Obviously 1, 

along with every prime number p, is a "loser" because you can 

only factor such a number as p=1xp, which allows your opponent 

the immediate winning move p-p=0.  (Only a fool, or a very kind 

parent, would opt for the non-winning move p-1 for a prime p.)  

The first winning number is 4, since its factorization as 2x2 

forces your opponent into 4-2=2=1x2.  The numbers 6 and 8 are 
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both losers because the factorizations 6=2x3 and 8=2x4 allow 

your opponent to counter with 6-2=4=2x2 and 8-4=4=2x2, 

respectively.  But 9 is a winner, because 9=3x3 forces your 

opponent into 9-3=6=2x3.  Similarly 10 is winner, because 10=2x5 

leaves your opponent either 10-5=5 or 10-2=8, both of which are 

on the losing list.

Let's do just a couple more numbers:  12 is on the losing list 

because 12=2x6 allows your opponent to get to the winning number 

12-2=10, and 12=3x4 allows the winning move 12=3=9.  Similarly 

for 15:  it's a loser because 15=3x5 allows for 15-5=10.  But 16 

and 18 are on the winning list, with winning moves 16=4x4 and 

18=3x6.

In general, once you have a complete list of all winning numbers 

less than N, you can determine whether or not N goes on the list 

by looking at its possible factorizations.  If there is a 

factorization N=hxk for which neither N-h nor N-k is on the 

list, then N goes on the list; otherwise N does not go on the 

list.  To do one more example, let's show why 72 is not on the 

list.  To do so, we have to consider all its factorizations:  

2x36, 3x24, 4x18, 6x12, and 8x9.  For 2x36, we have 72-36=36, 

which is on the list.  For 3x24, we have 72-24=48; for 4x18, we 

have 72-4=68 (and also 72-18=54, but all you need is one of the 

two); for 6x12 we have 72-6=66; and for 8x9, we have 72-9=63.

As mentioned, the list as presented shows all one- and two-digit 

winning numbers.  The reader may wish to check that it properly 

omits 97, 98, and 99.  (The easy case is 97:  it's prime.)  But 

what about 100?  As noted, A's opening factorization 100=4x25 

was a bad move, because it allowed B to get to 96.  (Actually, 

100-25=75 would have been a better move.  As we saw, B chose the 

"wrong" factorization for 96.  You can check that, for 75, there 

is no bad factorization.)  Is there a different factorization of 

100 that could have guaranteed A a win?

Once you get started, it's possible to extend the list 

indefinitely, with a fairly simple computer program.  Matt 

Richey at St. Olaf College in Northfield, Minnesota, wrote such 

a program and computed the list up to N=200,000.  There is no 

readily discernible pattern to the list.  Indeed, that's what 

makes it of possible theoretical interest:  the sequence (which 
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has yet to appear in the Online Encyclopedia of Integer 

Sequences, although that's likely to be self-correcting sometime 

soon) is easy to define, but has no obvious properties that 

allow one to say that a given (large) number is or isn't on the 

list, beyond the one obvious "theorem" that the list contains no 

prime numbers.  For example, based on the "early returns" 

showing 4, 9, 16, 25, and 36 on the list, one might speculate 

that all squares greater than 1 are winning numbers.  The next 

square, 49, which is also on the list, would seem to confirm 

that hypothesis.  But then you get to 64.... 

Richey's computation shows there are 366 numbers on the list up 

to 1000, 4033 up to 10,000, and 42,563 up to 100,000, but it's 

unclear whether the fraction is leveling off or continuing to 

climb.  It would be worthwhile to confirm (or correct) these 

calculations and to extend them for another few orders of 

magnitude.

Just knowing a number is on the list doesn't in itself say which 

factorization guarantees a win (unless the number is the product 

of two primes, or the square or cube of a single prime).  If 

there is any pattern here, it has eluded me.  Contrast this with 

the classic game of Nim, in which the winning positions are easy 

to spot and the winning moves easy to calculate.

Nim is often used as an enrichment activity in math classes, but 

I believe Factor Subtractor has its own pedagogical advantages.  

In particular, even if students play at random, they are still 

getting valuable practice doing arithmetic.  And children seem 

to enjoy playing the game, in part because it provides an 

obvious motivation -- namely winning -- for doing what might 

otherwise be a tedious worksheet assignment, and in part (to 

toss around some educational jargon) because it "empowers" them 

to choose which computations they do.

I have a couple of data points worth of support for this:  My 

daughter-in-law, Sanae Tomita, has used the game with a class of 

middle-school children, and Kurt Hedin, a teach at Bandelier 

Elementary School in Albuquerque, New Mexico, whom I met and 

showed the game, has taught it to his fourth-grade class.  I 

would be delighted to hear from other teachers who might have 

occasion to give Factor Subtractor a try with their students.
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Borders
a variant of Dots & Boxes

Jason Colwell
Associate Professor

Mathematics Department
Emmanuel College

Franklin Springs, GA

introduction In this article we propose a variant of the well-known game
Dots & Boxes. We investigate two simple positions of the game, and con-
jecture a criterion for determining which player has the win (in terms of the
dimensions of the rectangular board used).

description The game is played on an a×b grid (the squares being 1×1).
A move consists of building a fence along one side of a 1 × 1 square. If the
fence built completes an enclosure of one or more squares, all squares within
the enclosure are claimed by that player, except for any squares already
claimed by the other player.

differences from Dots & Boxes The game Borders is different from
Dots & Boxes in two ways:

• The building of a single fence segment may result in the player claiming
multiple squares.

• Claiming a square does not permit the player to build another fence
segment.

acknowledgement In an effort to see if this game had already been de-
scribed, the author found an online reference to a variant of Dots & Boxes
played in Poland where multiple squares can be claimed at once, but was un-
able to find a more complete description of that game. It is possible that it is
the same game proposed here, but it need not be, as the Polish variant may
retain the rule, of Dots & Boxes, that claiming squares permits the player
to build another fence segment. That is, the Polish variant may exhibit the
first difference from Dots & Boxes described above, but not the second.

“k-canal” We say that one square is “accessible” from another if they are
adjacent, and no fence segment has been built between them. By “k-canal”,
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we mean a sequence of k squares bordered each by exactly two fence segments,
each square accessible from the previous one, and the first and last squares of
the k-sequence not accessible from any square outside the k-sequence having
more than one fence segment bordering it. (Note the difference between the
“canal” in Borders and what is termed a “chain” in Dots & Boxes.)

two simple positions

• A 2k-canal has a value of 0 to the player who plays on it first. The
optimal move is to split the canal in half, creating a disjunctive sum of
two identical positions, which has value 0.

If the first player had made any different move on the 2k-canal, the
second player could have fenced off an even number of squares in the
middle of the canal, leaving a disjunctive sum of two identical positions
(at the two ends of the canal). The first player would then have lost
a number of points equal to the number of squares fenced off in the
middle of the canal.

• A (2k + 1)-canal has a value of -1 to the player who plays on it first.
The optimal move is to split the canal in two parts, one of length k
and the other of length k + 1.

The second player’s best move is then to complete the fourth fence
segment bordering the middle square in the chain, gaining him one
point, and leaving a disjunctive sum of two identical positions. No
other move by the second player would do better than this (for the
second player).

If the first player had made any different move on the (2k + 1)-canal,
the second player could have fenced off an odd number of squares (more
than one) in the middle of the canal, leaving a disjunctive sum of two
identical positions (at the two ends of the canal). The first player would
then have lost a number of points (more than one) equal to the number
of squares fenced off in the middle of the canal.

conjecture Suppose the game of Borders is played on an a×b board. The
game is a win for the first player if a+ b is odd, and for the second player if
a+ b is even.

c©2012 Jason Colwell. All rights reserved.
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Non-Euclidean Board Games

Andrea Hawksley
www.andreahawksley.com

hawksley@gmail.com

Introduction

Most traditional grid-based board games are played in Euclidean space. It is a fun and interesting exercise
to try and play them in non-Euclidean spaces. In this paper, we will explore playing the game of Chess in
non-Euclidean space, but the concepts used to extend Chess to non-standard geometries can be extended to
many other board games. A personal favorite game for these purposes is non-Euclidean Carcassonne.

Boards with Unusual Macrostructure

The simplest way to transform a standard board into a non-Euclidean board is to connect the sides of the
board together in some way. Connecting the squares on adjacent sides to each other creates a board with an
inherently spherical topology. In contrast, connecting the squares on opposite sides can lead to a board with
a toroidal structure. A twist in the way the squares are connected can lead to a board with the topology of a
klein bottle.

While these macrostructures are interesting, they are not inherently well suited for Chess. In particular,
none of these boards have edges. Thus, it is impossible for a Pawn to reach the edge of the board and become
a Queen. In fact, it’s not even clear that we weren’t playing on boards with these macrostructures all along,
and were just playing a subsection of space that was locally equivalent to a subsection of a Euclidean space.

The Chutes and Ladders Connection

How can we create a non-Euclidean board that does not lose the edge constraints of the original Chess board?
One way is to connect random squares to each other by the edges. We will refer to these kinds of connections
as “chutes” in homage to a classic board game with these kinds of connections - Chutes and Ladders.

We will use the chutes defined by the board in Figure to explain basic movement on a board with
chutes, however one can easily add their own chutes to any standardly gridded board to make it non-
Euclidean.

Chutes and ladders are functionally the same. The side of the tile going into the “top” of each chute
or ladder connects to the side of the tile going out of the “bottom” of that chute or ladder.1 For example, a
pawn moving forward two squares out of tile 84 would move out the left side of tile 28 and into tile 29. Note
that the pawn is now moving sideways, and can be Queen-ed on its next move onto tile 30. We recommend
playing with pieces with some obvious indication of directionality on them, so that you don’t lose track of
the traveling direction of your pawns.

In order for the board to be connected, we must also map the tiles that come out of the tops and bottoms
of each chute and ladder to each other. Thus, the bottom of tile 20 must match the bottom of tile 23 and the
left side of tile 18 must match the top of tile 59.
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Figure 1 : A standard Chutes and Ladders board
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The Turn-Left Metric

At this point, it is pretty clear how to travel across the sides of the tiles, but what it means to travel diagonally
is less well defined. We have chosen to use a “turn-left” metric to define diagonal moves. Let us imagine a
bishop moving diagonally out of the top right corner of square 4. In a standard Euclidean board, it would
end up in square 16 after moving one square. This is equivalent to moving into square 5, then turning left
and moving into square 16.

On our non-Euclidean board, we find the corner by moving in the direction of square 5, which brings
us out square 14 without rotation and turning left to end up in square 27. Since we haven’t rotated, if the
bishop wants to continue moving along the same diagonal it may. For its second square of movement, it can
travel in the direction of square 28 causing it to enter square 77 from the top. This time, when it turns left, it
enters square 76. Additionally, it has rotated −π/2 radians, thus, to continue along the same diagonal it will
want to move out of the bottom right corner of square 76, and comparably straight-forwardly into square 66.
Following similar logic, the next squares that the bishop can visit are 54, 26, 36, and 37.

Extensions

There are many other fascinating games that you can try playing along similar lines. Players might take turns
moving, then adding a new chute to the board. Roice Nelson has suggested playing chess or checkers on a
hyperbolic checkerboard. Are there any other interesting boards that you can imagine playing chess on?

A Puzzle

Can you design a chess board with a single chute such that White as a mate in one?
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Let’s play a concentration game with a few cards

Hirokazu Iwasawa∗

I believe that many of you will want to play a concentration game with a
few cards after you read this article—because it shows nice strategies to win the
game with a high probability. In fact, when you play a two-player concentration
game described below, the probability of your winning will be more than twice
that of the opponent’s if she is a normal clever person with a perfect memory,
whether you are the first player or the second player!

The game

You can apply the central idea of this article to a concentration game with a
different number of cards. But, for convenience, we concentrate on the following
concentration game:

Number of players: Two.

Cards used: Four pairs of cards (e.g. ♦ A, J, Q, K; ♥ A, J, Q, K).

Rule: The usual rule as follows. Shuffle the cards and lay them on
the table, face down, in a pattern (e.g. 2 cards × 4 cards). In
turn each player turns over two cards (one at a time). If they
are of the same rank and color, that player wins the pair and
plays again. If they don’t match, they are turned face down
again and it becomes the other player’s turn. The game ends
when the last pair has been picked up. The winner is the person
with more pairs, and there may be a tie.

Normal players

To consider strategies, suppose that

your opponent has a perfect memory and is such a normal person
that she never gives up a chance to make a pair in any turn of hers
(more specifically, she never chooses a known card unless she is sure
she can then make a pair using that card).

At least in my observation, we are actually allowed to suppose this for a regular
person when we play a concentration game with a few cards.

∗iwahiro@bb.mbn.or.jp
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We don’t need any advanced knowledge to compute the probabilities of win-
ning/losing this game. The calculation is, however, quite cumbersome because
we need to consider separately so many cases although there are only eight
cards. So I show here only the results of calculation:

If both players are normal in our sense,

The probability of the first player’s winning = 3/5 = 60%,

The probability of the second player’s winning = 4/15 � 26.7%,

The probability of a tie = 2/15 � 13.3%.

It means that the probability of the first player’s winning is 2.25 times that
of the opponent’s. Therefore, this game may look very unfair to the second
player. But the truth is that there are nice strategies for the second player.

The best strategy against a normal opponent

If you are the first player, being normal is good enough as we’ve seen it. Indeed,
it is the best strategy against a normal opponent.

How about when you are the second player? The following is the best strat-
egy against a normal opponent:

If the very first two cards opened by the first player don’t match,
you turn over the same two cards.

If you take this strategy and the opponent is still normal,

The probability of your winning = 62/105 � 59.0%,

The probability of the opponent’s winning = 29/105 � 27.6%,

The probability of a tie = 2/15 � 13.3%.

It means that the probability of your winning is more than 2.1 times that
of the opponent’s. Wow, whether you are the first player or not, you win, in a
long run, more than twice as many as you lose.

The practically best strategy

You may say, “OK. But, as the suggested best strategy gives the opponent a
strange impression, she may become cautious and copy your play to disable your
strategy.”

Well, you’re so clever as I thought. But don’t worry. You can take the
following quieter strategy, which can be taken also after your opponent copies
your first play:

Choose a known card (if possible) for a second card in your each
turn if there remains a pair neither of which has appeared.
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If you take this strategy and the opponent remains normal as I hope,

The probability of your winning = 10/21 � 47.6%,

The probability of the opponent’s winning = 43/105 � 41.0%,

The probability of a tie = 4/35 � 11.4%.

So you still have advantage over the opponent!

What happens if both players do the best?

By the way, what is the first player’s best strategy when the opponent plays
best? A trick appears, for example, in the following situation:

There still remain all the eight cards. Three of them were turned
over before and no two of the three match.

When you encounter this situation in your turn, don’t you turn over a new
card? —That’s not good! You should turn over two of the known cards, math-
ematics says.

So, at such a tricky point, the game stops in effect as neither player will turn
over any new card if they play best. And it’s not rare—it occurs at the rate of
4/7(� 57.1%).

However, I think it rarely happens actually unless, say, both players have
read this article. So, don’t hesitate to play this concentration game with a
regular person. —Good luck!

——————————

Appendix: The best strategy for the standard
two-player concentration game

If you have a very good memory, you may want to use more cards. Here is the
best strategy for up to 26 pairs (the full deck) optimizing (not the probability
of your winning but) the expected number of cards you get.

Let (m,n) express a situation in which there remain m pairs on the table
and there are n known cards among them.

The best strategy:

1. When your turn comes,

(a) if there is a pair among the known cards, take them;

(b) otherwise, choose one of the known cards if and only if the
situation (m,n) is such that n ≥ 3 and m − n = 1 or the
situation (m,n) is equal to either of
(4, 2), (5, 3), (7, 2), (7, 3), (8, 4), (9, 2), (9, 5), (10, 3), (10, 6),
(11, 4), (12, 2), (13, 3), (15, 3), (17, 2), (18, 3), (20, 2).
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2. After you choose your first card,

(a) if there is a known card thatmatches your first card, choose
it;

(b) otherwise, choose a new card if and only if the situation
(m,n) is such that n ≤ 1 or m = n or the situation (m,n)
is equal to either of
(5, 2), (6, 3), (7, 4), (8, 5), (8, 2), (9, 3), (10, 2), (11, 3), (13, 2),
(14, 3), (16, 2), (17, 3), (18, 2), (21, 2), (22, 20), (23, 21), (24, 22),
(24, 2), (25, 23), (26, 24).

If you take this strategy against a normal person, the probabilities of your
winning, losing and a tie are 0.70458, 0.23895 and 0.05647, respectively, when
you’re the first player; and they’re 0.70452, 0.23907 and 0.05640 when the second
player.

You might feel the best strategy is too complicated for practice. Then you
may simplify 1(b) to:

otherwise, choose a new card unless the situation (m,n) is such that
n ≥ 3 and m− n = 1

and 2(b) to:

otherwise, choose a known card (if possible) unless the situation
(m,n) is such that m = n.

If you take this simpler strategy against a normal person, the probabili-
ties are 0.70395, 0.23950 and 0.05656 when you’re the first player; and they’re
0.70390, 0.23962 and 0.05649 when the second player. Practically speaking, the
effect is almost the same as the best strategy.

What is the best strategy in the sense that both players do the best? There
is a nice paper on this topic.1 I’ve confirmed their results also in my calculation
up to the 26 pairs’ case. In my representation of the best strategy in this sense,
1(a) and 2(a) are the same as above but 1(b) is:

otherwise, choose a new card unless the situation (m,n) is such that
m− n is odd and n ≥ 2(m+ 1)/3

and 2(b) is:

otherwise, choose a known card (if possible) unless the situation
(m,n) is such that m− n is odd or (m,n) = (6, 2).

If you wish, you may take this strategy also against a normal person. Then
the probabilities are 0.64140, 0.29478 and 0.06382 when you’re the first player;
they’re 0.63960, 0.29635 and 0.06405 when the second player.

1U. Zwick, M.S. Paterson, “The Memory Game,” Theoretical Computer Science, Vol.110,
No.1, 1993.
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THE GIFT EXCHANGE AND PUZZLE CHALLENGE OF IVAN MOSCOVICH

  The Story of   "THHHHHEEEEE     GGGGGRRRRRAAAAASSSSSSSSSSHHHHHOOOOOPPPPPPPPPPIIIIINNNNNGGGGG          GGGGGAAAAAMMMMMEEEEE"""""
      for G4G10 (Gathering for Gardner 10)                                        Atlanta 27 March - April 2, 2012

The Story of "THE GRASSHOPPING GAME" _
 Invented by Ivan Moscovich
 
 On the first day of the International Puzzle Party (IPP)  in Antwerpen in 2002, there was 
a long neverending and boring lecture. I was doodling on a squared page of paper, when out 
of the blue,  an idea for a paper-and-pencil  puzzle/game surfaced.  It was not the first time   
 that  my subconscious was providing me with original ideas.
   
   The idea:
    Imagine a Grasshopper jumping along a line according
    to the following rules.
    Given a line of integral length 'n', the object of our Grasshopper
    is to start jumping from point 0,  in successive jumps of consecutive
    lengths :  1-2-3-4-............-n    along the line, so as to make as many
    jumps as possible and finish the n-th  jump at the end point of the line,
    at point 'n'.
  If we have a line on which this can be achieved our game ended and we have a
  solution.    I f not, the game has not ended and has no solution.

 Looks interesting, I decided, and went on doodling systematically to find solutions:
 
 

0 1 2

1 n = 2  No Solution 

1

2

3

4

0 1 2 43

n = 4 Second Solution

3

n = 3  No Solution  

1 2 30

1

2

n = 1  First Solution (trivial) 
0 1

1

page 1
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The Story of "THE GRASSHOPPING GAME" _
 
 
 By this time I saw there are lines on which the game can be properly ended providing 
a solution, and other  which have no solution at all.. But it also became clear to me that my 
innocent Grasshopping Game is much more than just a simple paper-and-pencil doodling. 
 Its solutions are generating an infinite number sequence, and an infinite number of 
puzzles to solve,  with some interesting mathematics behind it.

 I wanted to go on doodling  to find  more solutions, but at this point the boring, but 
now productive lecture ended.

 With this interruption I would like to challenge the audience to find the next three 
solutions to the Grasshopping Game which can now be called the Grasshopping Sequence. 
The first person coming to me with the solutions will get as a prize: my next book  " The Puzzle 
-Book" soon to be published.

 After the interruption I sat down and devoted an hour or so, to find the solutions to the 
first 40 games. I found there are 16 solutions among them. Can you try to do the same?

 
 Later that day,  I met Dick Hess and asked for his ideas  on  the general solution of  
the Grasshopping Sequence.  The next day at breakfast I met him again.  He politely  thanked 
me for the sleepless night, but assured me, he doesn't give up.  Dick  joined forces with Benji 
Fisher, and the next day,  the mathematics behind the Grasshopping Sequence was solved, 
providing me with the solutions for any line length,  this  time without hard work.

 The end of the story of the Grasshopping Game and Sequence:
 At the next G4G9  I met Neil Sloane. Somewhat timidly, I told him the story of  
Grasshopping,  my integer number sequence. He was enthusiastic about it.
 The result was, that today, my Grasshopping Puzzle-Game and the Grasshopping 
Number Sequence occupy a respectable place on the Internet,  among the giants of 
integer sequences,  the Pi, the Primes, the Fibonacci and other - in the exciting "On-Line 
Encyclopedia of Integer Sequences of Neil  - of which I am quite proud.

 Google it on the Internet, to reveal the general solution and the mathematics 
behind the Grasshopping Number Sequence. 
             I.M.at G4G10
             Atlanta, 2012

THE GIFT EXCHANGE AND PUZZLE CHALLENGE OF IVAN MOSCOVICH

  The Story of   "THHHHHEEEEE     GGGGGRRRRRAAAAASSSSSSSSSSHHHHHOOOOOPPPPPPPPPPIIIIINNNNNGGGGG          GGGGGAAAAAMMMMMEEEEE"""""
      for G4G10 (Gathering for Gardner 10)                                        Atlanta 27 March - April 2, 2012
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The Secrets of Notakto: Winning at X-only

Tic-Tac-Toe

Thane E. Plambeck, Greg Whitehead

March 28, 2012

Abstract

We analyze misere play of “impartial” tic-tac-toe—a game suggested
by Bob Koca in which both players make X’s on the board, and the first
player to complete three-in-a-row loses. This game was recently discussed
on mathoverflow.net in a thread created by Timothy Y. Chow.

1 Introduction

Suppose tic-toe-toe is played on the usual 3x3 board, but where both players
make X’s on the board. The first player to complete a line of three-in-a-row
loses the game.

Who should win? The answer for a single 3x3 board is given in a recent
mathoverflow.net discussion [Chow]:

In the 3x3 misere game, the first player wins by playing in the
center, and then wherever the second player plays, the first player
plays a knight’s move away from that.

Kevin Buzzard pointed out that any other first-player move loses:

The reason any move other than the centre loses for [the first
player to move] in the 3x3 game is that [the second player] can
respond with a move diametrically opposite [the first player’s] initial
move. This makes the centre square unplayable, and then player two
just plays the “180 degree rotation” strategy which clearly wins.

In this note we generalize these results to give a complete analysis of multi-
board impartial tic-tac-toe under the disjunctive misere-play convention.

2 Disjunctive misere play

A disjunctive game of 3x3 impartial tic-tac-toe is played not just with one tic-
tac-toe board, but more generally with an arbitrary (finite) number of such
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boards forming the start position. On a player’s move, he or she selects a single
one of the boards, and makes an X on it (a board that already has a three-in-
a-row configuration of X’s is considered unavailable for further moves and out
of play).

Play ends when every board has a three-in-a-row configuration. The player
who completes the last three-in-a-row on the last available board is the loser.

3 The misere quotient of 3x3 impartial tic-tac-
toe

We can give a succinct and complete analysis of the best misere play of an ar-
bitrarily complicated disjunctive sum of impartial 3x3 tic-tac-toe positions by
introducing a certain 18-element commutative monoid Q given by the presen-
tation

Q = 〈 a, b, c, d | a2 = 1, b3 = b, b2c = c, c3 = ac2, b2d = d, cd = ad, d2 = c2〉.
(1)

The monoid Q has eighteen elements

Q = {1, a, b, ab, b2, ab2, c, ac, bc, abc, c2, ac2, bc2, abc2, d, ad, bd, abd}, (2)

and it is called the misere quotient of impartial tic-tac-toe1.
A complete discussion of the misere quotient theory (and how Q can be

calculated from the rules of impartial tic-tac-toe) is outside the scope of this
document. General information about misere quotients and their construction
can be found in [MQ1], [MQ2], [MQ3], and [MQ4]. One way to think of Q is
that it captures the misere analogue of the “nimbers” and “nim addition” that
are used in normal play disjunctive impartial game analyses, but localized to
the play of this particular impartial game, misere impartial 3x3 tic-tac-toe.

In the remainder of this paper, we simply take Q as given.

4 Outcome determination

Figure 6 (on page 7, after the References) assigns an element of Q to each
of the conceivable 102 non-isomorphic positions2 in 3x3 single-board impartial

1For the cognoscenti: Q arises as the misere quotient of the hereditary closure of the sum
G of two impartial misere games G = 4 + {2+, 0}. The game {2+, 0} is the misere canonical
form of the 3x3 single board start position, and “4” represents the nim-heap of size 4, which
also happens to occur as a single-board position in impartial tic-tac-toe. In describing these
misere canonical forms, we’ve used the notation of John Conway’s On Numbers and Games,
on page 141, Figure 32.

2We mean “non-isomorphic” under a reflection or rotation of the board. In making this
count, we’re including positions that couldn’t be reached in actual play because they have too
many completed rows of X’s, but that doesn’t matter since all those elements are assigned the
identity element of Q.
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tic-tac-toe.
To determine the outcome of a multi-board position (ie, whether the position

is an N-position—a Next player to move wins in best play, or alternatively, a
P-position—second player to move wins), one first multiplies the corresponding
elements of Q from the dictionary together. The resulting word is then reduced
via the relations 1, that we started with above, necessarily eventually arriving
at at one of the eighteen words (in the alphabet a, b, c, d) that make up the
elements of Q.

If that word ends up being one of the four words in the set P

P = {a, b2, bc, c2}, (3)

the position is P-position; otherwise, it’s an N-position.

5 Example analysis

To illustrate outcome calculation for Impartial Tic-Tac-Toe, we consider the
two-board start position shown in Figure 1.

Figure 1: The two-board start position.

Consulting Figure 6, we find that the monoid-value of a single empty board
is c. Since we have two such boards in our position, we multiply these two values
together and obtain the monoid element

c2 = c · c.

Since c2 is in the set P (equation (3)), the position shown in Figure 1 is a
second player win. Supposing therefore that we helpfully encourage our oppo-
nent to make the first move, and that she moves to the center of one of the
boards, we arrive at the position shown in Figure 2.

It so happens that if we mimic our opponent’s move on the other board,
this happens to be a winning move. We arrive at the position shown in Figure
3, each of whose two boards is of value c2; multiplying these two together, and
simplifying via the relations shown in equation (1), we have

c4 = c3 · c
= ac2 · c
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Figure 2: A doomed first move from the two-board start position.

= ac3

= aac2

= c2,

which is a P-position, as desired.

Figure 3: Mimicry works here, but not in general.

So is the general winning stategy of the two-board position simply to copy
our opponent’s moves on the other board? Far from it: consider what happens
if our opponent should decide to complete a line on one of the boards—copying
that move on the other board, we’d lose rather than win! For example, from
the N-position shown in Figure 5, there certainly is a winning move, but it’s not
to the upper-right-hand corner of the board on the right, which loses.

Figure 4: An N-position in which mimickry loses.

We invite our reader to find a correct reply!

6 The iPad game Notakto

Evidently the computation of general outcomes in misere tic-tac-toe is somewhat
complicated, involving computations in finite monoid and looking up values from
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a table of all possible single-board positions.
However, we’ve found that a human can develop the ability to win from

multi-board positions with some practice.

Figure 5: A six-board game of Notakto, in progress.

Notakto “No tac toe” is an iPad game that allows the user to practice
playing misere X-only Tic-Tac-Toe against a computer. Impartial misere tic-
tac-toe from start positions involving one up to as many as six initial tic-tac-toe
boards are supported.

The Notakto iPad application is available for free at http://www.notakto.com.

7 Final question

Does the 4x4 game have a finite misere quotient?
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c 1 1 c2 a d b b b a

a b a 1 b a b d a d

d a a b a a 1 1 a b b

1 1 1 1 1 a a a b

b 1 1 b a b a b b b a

1 b a b 1 a 1 1 1

1 1 1 1 1 1 1 1 b

b a 1 1 1 1 1 a a

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 a 1 1

1 1 1 1 1 1 1 1 1

1 1 1

Figure 6: The 102 nonisomorphic ways of arranging zero to nine X’s on a
tic-tac-toe board, each shown together with its corresponding misere quotient
element from Q. 7
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the Penrose tiles(almost) onsDominoPlaying –Quasimino

Ayelet Pnueli – Kefgames
@kefgames.comyeletamail:E

Rules of the games: 

Quasimino contains a set of 90 diamond shaped tiles (45 regular diamonds and 45 elongated 
diamonds). 
Two tiles can be legally placed next to each other if the stripes that meet on the common edge are of 
the same color and the two tiles do not form a parallelogram:

Examples of legal placements: 
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Examples of illegal placements (color mismatch and parallelograms). 

If when placing a tile it touches multiple other tiles, then the placing should be legal with respect to 
all the touching edges 
A vertex (or tile meeting point) is ‘covered’ if there are tiles surrounding it completely (360 
degrees) . Note that the simplest way to ‘cover a vertex’ is by using three tiles – two regular and one 
elongated or two elongated and one regular: 

but there are many more ways to cover a vertex, for example: 
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Quasi-Domino 

This game is a two dimensional variant of the common Domino game.  
Each player starts with a set of tiles and the first player to get rid of all his/her tiles wins. 

Before the game all tiles are set face down on the table, mixed together and arranged in a pile. 
Each player selects six tiles (three regular and three elongated) from the pile. Additionally, two tiles, 
one regular and one elongated are placed ‘face up’ on the table.  
The first player that can arrange a legal shape (not necessarily covering a vertex) from a tile in 
his/her hand and the two open tiles shouts Quasi and starts the game by making that shape. After 
that, players take turns playing in a clockwise direction. 

Each player in his/her turn must place a tile on the table in a way that is legal and touches at least 
one of the existing tiles along an edge. Note that unlike regular Domino you typically have many 
edges to which a new tile can be connected. 

If, in your turn, you cannot legally place a tile on the table you must take an extra one from the pile. 
If by placing a tile on the table you covered a vertex (see above) you get to play an extra turn (or 
win if this was your last tile). 
If by placing a tile on the table you do not cover any vertex you must take one tile from the pile, (so 
the number of tiles in your hand remains unchanged). 
The first player to get rid of all his/her tiles (by covering enough Vertices) wins. 

Notes:
1. When taking a tile from the pile you can choose to take a regular or an elongated tile (as 

long as there are such tiles available in the pile). Each type may be the better choice at 
different stages of the game. 

2. Observing the ‘parallelogram rule’, is sometimes not easy for beginners. As a result it is 
possible that during the game players discover that the shape on the table contains an illegal 
parallelogram. If this is discovered when the player placed his/her tile – he/she should take it 
back and try another move. If this is discovered after other players have played, the game 
continues as if that move was legal. 

Extra skill rule: To add to the skill level of the game, players can agree that it is possible to 
rearrange tiles on the table provided that all rearranged tiles touched the rest of the shape on the 
table with at most one edge and after rearranging them, all tiles that were moved now participate in 
a covered vertex. 

Quasi-Match 
Quasi-Match is played with one set of (90) Quasimino tiles plus a set of tokens in different colors 
(one color per player).  
The aim of the game is to ‘own’ as many ‘covered vertices’ (see above) as possible. 
Before the game all tiles are set face down on the table, mixed together and arranged in a pile. 
Each player selects four tiles (two regular and two elongated) from the pile. Additionally two tiles 
one regular and one elongated are placed ‘face up’ on the table. 
The first player that can arrange a legal shape (not necessarily cover a vertex) from a tile in his/her 
hand and the two open tiles shouts ‘Quasi’ and starts the game by making that arrangement. After 
that, players take turns playing in a clockwise direction. Each player in his/her turn connects a tile 
to the shape on the table and takes one tile from the pile (thus keeping the number of tiles in hand 
four). 

A player who cannot legally place a tile on the table says so and is skipped over. The next player 
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gets to play two turns. 
A player who, by placing a tile on the table, covered one or more vertices, now owns them, he/she 
denotes this by placing tokens of his/her color on these vertices. He/She also gets another turn. 

The game ends when all tiles from the pile are exhausted and all tiles from the hands of the players 
have been played. The player with the most tokens on the table wins. Alternatively players may 
agree in advance on a number (for example, six or ten), such that the first player to reach this 
number of tokens wins. 

Notes:
1. When taking a tile from the pile you can choose to take a regular or an elongated tile (as 

long as there are such tiles available in the pile). Each type may be the better choice at 
different stages of the game. 

2. Observing the ‘parallelogram rule, is sometimes not easy for beginners. As a result it is 
possible that during the game players discover that the shape on the table contains an illegal 
parallelogram. If this is discovered when the player placed his/her tile – he/she should take it 
back and try another move. If this is discovered after other players have played, the game 
continues as if that move was legal. 

Extra skill: To add to the skill level of the game, players can agree that it is possible to rearrange 
tiles on the table provided that all rearranged tiles touched the rest of the shape on the table with at 
most one edge and after rearranging them, all tiles that were moved now participate in a covered 
vertex. 

FastQuasi! 
In this version of Quasimino each player selects 14 face down Hexamino tiles (7 regular and 7 
elongated). When the game starts each player turns his/her tiles face up and his/her aim is to build 
from these tiles a shape or shapes with as many covered vertices (see above) as possible as fast as 
possible. 
The first player to finish his/her shape or shapes shouts Quasi! And all players must stop. Each 
player then counts the number of covered vertices he/she has and the player with the highest count 
wins. 
In order to shout ‘Quasi!’ a player must have all his./her tiles arranged legally into one or more 
shapes such that each shape has at least three tiles. 

Acknowledgement 
The tiles in Quasimino are based on work by the mathematician and physicist Roger Penrose who 
used them to show an aperiodic tiling of the plane (in fact they are known as the P3 or Rhombus 
version of his now famous Penrose tiling). 
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2 x ribbon spread turnover = 1 x tractrix racer
Burkard Polster, Monash University, Australia, www.qedcat.com

1. Ribbon spread two decks of cards

2. Partially turn over both spreads

3. Balance a book on the two peaks

4. Give the book a little push in the direction of the spreads and it will race 
along the track turning over the two spreads in the process. Here is a movie
http://www.youtube.com/watch?v=pEEcafsT6ec&feature=youtu.be

A couple of observations:

The halfway stage of a ribbon spread
turnover is a discrete version of a
tractrix.

You get a similar discrete tractrix 
by tumbling a row of dominos 
simultaneously from both sides.

So, in a way, turning over a spread of
cards is domino tumbling and the 
reverse of domino tumbling happening
at the same time.

The book makes it possible to turn
over spreads of cards that are several
meters long.

The sound produced by the cards 
making contact with the book is
very similar to the sound you get
when you tumble dominos.

I hope that this is not an old hat.

In any case, have fun playing with this!
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AL-JABAR 
A Mathematical Game of Strategy 

Robert P. Schneider and Cyrus Hettle 

University of Kentucky 

 

 

Concepts  
 

The game of Al-Jabar is based on concepts of 

color-mixing familiar to most of us from 

childhood, and on ideas from abstract algebra, a 

branch of higher mathematics. Once you are 

familiar with the rules of the game, your 

intuitive notions of color lead to interesting and 

often counter-intuitive color combinations 

created in gameplay.  

 

Because Al-Jabar requires some preliminary 

understanding of the color-mixing mechanic 

before playing the game, these rules are 

organized somewhat differently than most 

rulebooks. This first section details the 

equivalent of mixing) colors. While the 

mathematics involved uses some elements of 

group theory, a foundational topic in abstract 

difficult and requires no mathematical 

background. The second section explains the 

process of play, and how this arithmetic of 

colors is used in the game. A third section 

gives several extensions and variations of the 

 

 

Gameplay consists of manipulating game pieces 

in the three primary colors red, blue and yellow, 

which we denote in writing by R, B, and Y 

respectively; the three secondary colors green, 

orange and purple, which we denote by G, O, 

and P; the color white, denoted by W; and clear 

pieces, denoted by C, which are considered to 

 

 

We refer to a game piece by its color, e.g. a red 

 

 

or grouping together, of colored game pieces, 

Any such grouping of colors will have a single 

equal, or interchangeable, according to the rules 

of the game; that is, the sets have the same sum. 

The order of a set of colors does not affect its 

sum; the pieces can be placed however you like.  

 

Keep in mind as you read on that these 

equations just stand for clusters of pieces. Try 

to see pictures of colorful pieces, not black-and-

white symbols, in your mind. Try to imagine a 

mathematics, symbols are usually just a black-

and-white way to write something much 

prettier.  

 

Here are four of the defining rules in Al-Jabar, 

from which the entire game follows:  

 

P = R + B  

 

indicates that purple is the sum of red and blue, 

i.e. a red and a blue may be exchanged for a 

purple during gameplay, and vice versa;  

 

O = R + Y 

  

indicates that orange is the sum of red and 

yellow;  

 

G = B + Y  
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indicates that green is the sum of blue and 

yellow; and a less obvious rule  

 

W = R + B + Y  

indicates that white is the sum of red, blue and 

yellow, which reminds us of the fact that white 

light contains all the colors of the spectrum in 

fact, we see in the above equation that the three 

secondary colors R + B, R + Y and B + Y are also 

contained in the sum W.  

 

In addition, there are two rules related to the 

clear pieces. Here we use red as an example 

color, but the same rules apply to every color, 

including clear itself:  

 

R + C = R  

 

indicates that a sum of colors is not changed by 

adding or removing a clear; and a special rule  

 

R + R = C  

 

indicates that two pieces of the same color 

with a clear in gameplay.  It follows from the 

above two rules that if we have a sum 

containing a double, like R + B + B, then  

 

R + B + B = R + C  

 

as the two blues are equal to a clear. But             

R + C = R so we find that 

 

R + B + B = R,  

 

which indicates that a sum of colors is not 

changed by adding or removing a double the 

sum. It also follows from these rules that if we 

replace R and B with C in the above equations,  

 

C + C = C 

C + C + C = C  

etc. 

We note that all groups of pieces having the 

same sum are interchangeable in Al-Jabar. For 

instance,  

 

Y + O = Y + R + Y = R + Y + Y 

= R + C = R,  

 

as orange may be replaced by  

 

R + Y 

 

and then the double Y + Y may be cancelled 

from the sum.  

 

But it is also true that  

 

B + P = B + R + B = R + C = R,  

 

and even  

 

G + W = B + Y + W = B + Y + R + B + Y  

= R + C + C = R,  

 

which uses the same rules, but takes an extra 

step as both G and W are replaced by primary 

colors.  

 

All of these different combinations have a sum 

of R, so they are equal to each other, and 

interchangeable in gameplay:  

 

Y + O = B + P = G + W = R.  

 

In fact, every color in the game can be 

represented as the sum of two other colors in 

many different ways, and all these combinations 

which add up to the same color are 

interchangeable.  

 

Every color can also be represented in many 

different ways as the sum of three other colors; 

for example  

 

Y + P + G = Y + R + B + B + Y 

= R + C + C = R 
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and  

O + P + W = R + Y + R + B + R + B + Y  

= R + C + C + C = R 

 

are interchangeable with all of the above 

combinations having sum R.  

 

An easy technique for working out the sum of a 

set of colors is this:  

 

1. Cancel the doubles from the set;  

 

2. Replace each secondary color, or white, with 

the sum of the appropriate primary colors;  

 

3. Cancel the doubles from this larger set of 

colors;  

 

4. Replace the remaining colors with a single 

piece, if possible, or repeat these steps until 

only one piece remains (possibly a clear piece).  

 

The color of this piece is the sum of the original 

set, as each step simplifies the set but does not 

affect its sum.  

 

As you become familiar with these rules and 

concepts, it is often possible to skip multiple 

steps in your mind, and you will begin to see 

many possibilities for different combinations at 

once.  

 

Before playing, you should be familiar with 

these important combinations, and prove for 

yourself that they are true by the rules of the 

game:  

 

R + O = Y, Y + O = R,  

B + P = R, R + P = B,  

B + G = Y, Y + G = B.  

 

These show that a secondary color plus one of 

the primary colors composing it equals the 

other primary color composing it.  

 

You should know, and prove for yourself, that  

 

G + O = P, O + P = G, P + G = O,  

 

i.e. that the sum of two secondary colors is 

equal to the other secondary color.  

 

You should know, and prove for yourself, that 

adding any two equal or interchangeable sets 

equals clear; for example  

 

R + B = P, and so R + B + P = C.  

 

You should experiment with sums involving 

white it is the most versatile color in 

gameplay, as it contains all of the other colors.  

 

Play around with the colors. See what happens 

if you add two or three colors together; see 

what combinations are equal to C; take a 

handful of pieces at random and find its sum. 

Soon you will discover your own combinations, 

and develop your own tricks. 

 

 

Rules of Play  

. Al-Jabar is played by 2 to 4 people. The object 

of the game is to finish with the fewest game 

 

. One player is the dealer. The dealer draws 

from a bag of 70 game pieces (10 each of the 

colors white, red, yellow, blue, orange, green, 

and purple), and places 30 clear pieces in a 

location accessible to all players.   

 

Note: Later in the game, it may happen 
that the clear pieces run out due to rule 
6. In this event, players may remove clear 
pieces from the center and place them in 
the general supply, taking care to leave a 
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few in the center. If there are still an 
insufficient number, substitutes may be 
used, as the number of clears provided is 
not intended to be a limit. 
 

. Each player is dealt 13 game pieces, drawn at 

random from the bag, which remain visible to 

all throughout the game.  

. To initiate gameplay, one colored game piece, 

drawn at random from the bag, and one clear 

piece are placed on the central game surface 

 

 

. Beginning with the player to the left of dealer 

and proceeding clockwise, each player takes a 

turn by exchanging any combination of 1, 2 or 3 

pieces from his or her hand for a set of 1, 2 or 3 

pieces from the Center having an equal sum of 

colors.  

 

The exception to this rule is the combination of 

4 pieces R + B + Y + W, which may be exchanged 

for a clear piece. This action is called the 

 

 

Note: Thus the shortest that a game may 
last is 5 moves, for a player may reduce 
their hand by at most 3 pieces in a turn. 
 

If a player having more than 3 game pieces in 

hand cannot make a valid move in a given turn, 

then he or she must draw additional pieces at 

random from the bag into his or her hand until a 

move can be made.  

 

occurring in the Center, then each such double 

is removed from the Center and discarded (or 

 

 

In addition, every other player must draw the 

same number of clear pieces as are produced by 

cancellations in this turn.  

There are two exceptions to this rule: 

 

(i) Pairs of clear pieces are never cancelled from 

the Center;  

of pieces placed from his or her hand to the 

Center, then the other players are not required 

to take clear pieces due to cancellations of that 

color, although clear pieces may still be drawn 

from cancellations of other colored pairs. 

 

Note: The goals of a player, during his or 
her turn, are to exchange the largest 
possible number of pieces from his or her 
hand for the smallest number of pieces 
from the Center; and to create as many 
cancellations in the Center as possible, so 
as to require the other players to draw 
clear pieces.  

 

. A player may draw additional pieces as 

desired at random from the bag during his or 

her turn. 

 

Note: If a player finds that his or her 
hand is composed mostly of a few colors, 
or requires a certain color for a 
particularly effective future move, this 
may be a wise idea. 
 

 A round of gameplay is complete when every 

player, starting with the first player, has taken a 

turn.  Either or both of two events may signal 

that the game is in its final round. 

(i) One player announces, immediately after his 

or her turn, that he or she has reduced his or 

her hand to one piece;  

 

(ii) One player, having 3 or fewer pieces in 

hand, is unable to make a move resulting in a 

decrease of the total number of pieces in his or 

her hand.  
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In either case, the players who have not yet 

taken a turn in the current round are allowed to 

make their final moves.  

 

When this final round is complete, the player 

with the fewest remaining pieces in hand is the 

winner. If two or more players are tied for the 

fewest number of pieces in hand, they share the 

victory. 

 

 

 

Mathematical Notes 

For the interested, mathematically-inclined 

reader, we outline the algebraic properties of 

Al-Jabar. This section is in no way essential for 

gameplay. Rather, the following notes are 

included to aid in analyzing and extending the 

game rules, which were derived using general 

formulas, to include sets having any number of 

pieces other than colors.  

The arithmetic of Al-Jabar in the group of the 

eight colors of the game is isomorphic to the 

addition of ordered triples in , that 

is, 3-vectors whose elements lie in the 

congruence classes modulo 2.  

The relationship becomes clear if we identify 

the three primary colors red, yellow, and blue 

with the ordered triples 

R = (1,0,0), Y = (0,1,0), B = (0,0,1) 

and define the clear color to be the identity 

vector 

C = (0,0,0). 

We identify the other colors in the game with 

the following ordered triples using component-

wise vector addition: 

O = R + Y = (1,0,0) + (0,1,0) = (1,1,0) 

G = Y + B = (0,1,0) + (0,0,1) = (0,1,1) 

P = R + B = (1,0,0) + (0,0,1) = (1,0,1) 

W = R + Y + B                                                   

= (1,0,0) + (0,1,0) + (0,0,1)= (1,1,1). 

The color-addition properties of the game 

follow immediately from these identities if we 

sum the vector entries using addition modulo 2. 

Then the set of colors {R, Y, B, O, G, P, W, C} is a 

group under the given operation of addition, for 

it is closed, associative, has an identity element 

(C), and each element has an inverse (itself).  

Certain rules of gameplay were derived from 

general formulas, the rationale for which 

involved a mixture of probabilistic and strategic 

considerations. Using these formulas, the rules 

of Al-Jabar can be generalized to encompass 

different finite cyclic groups and different 

numbers of primary elements, i.e. using n-

vectors with entries in  that is, elements of  

 

In such a more general setting, there are  

-

 other nonzero 

-vectors comprising the group are generated 

using component-wise addition modulo , as 

above. Also, the analog to the clear game piece 

is the zero-  

In addition, the following numbered rules from 

the Rules of Play would be generalized as 

described here: 

 The initial pool of game pieces used to deal 

from will be composed of at least  

  

pieces, where  is at least as great as  

multiplied by the number of players. This pool 

of pieces will be divided into an equal number  

of every game piece color except for the clear or 

identity- . Players will recall 



GAMES  |  141

that the number of clears is arbitrary and 

intended to be unlimited during gameplay, so 

this number will not be affected by the choice of 

; 

 The number of pieces initially dealt to each 

player will be  

; 

On each turn, a player will exchange up to  

pieces from his or her hand for up to  marbles 

from the Center with the same sum. The 

exception to this is the Spectrum, which will 

consist of the  primary colors  

 

together with the n-vector 

 

which is the generalized analog to the white 

game piece used in the regular game. It will be 

seen that these  marbles have a sum of 

or clear. 

A player must draw additional marbles if he or 

she has more than  pieces in hand and cannot 

make a move; 

 The cancellation rule will apply to -tuples 

(instead of doubles) of identical non-clear 

colors;  

 The first player to have either 1 piece left, or 

to be unable to reduce his or her hand to fewer 

than  pieces, will signal the final round.    

Thus for the group 

 

 

we have  and let Then each 

player starts with  game pieces dealt from a 

bag of 10 each of the 15 non-clear colors, may 

exchange up to 4 pieces on any turn or 5 pieces 

in the case of a Spectrum move, and will signal 

the end of the game with 4 or fewer pieces in 

hand.  

Here the Spectrum consists of the colors 

 

and the cancellation rule still applies to doubles 

in this example, as . 

 

Other cyclic groups may also be seen as sets of 

colors under our addition, such as 

 

 

 

 

in which every game piece either contains, for 

example, no red (0), light red (1) or dark red (2) 

in the first vector entry, and either contains no 

blue (0), light blue (1) or dark blue (2) in the 

second entry. Therefore we might respectively 

classify the nine elements above as the set 

 

 

 

 

 

Of course, other colors rather than shades of 

red and blue may be used, or even 

appropriately selected non-colored game 

pieces.  

Further generalizations of the game rules may 

be possible for instance, using -vectors in 

 where the subscripts  are 

not all equal and other games might be 

produced by other alterations of the rules of 

play.            

Copyright ©2012 Robert P. Schneider/Cyrus Hettle  
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Some New Combinatorial Games

(From the Past Ten Years)

Aaron N. Siegel

March 26, 2012

The past ten years have seen exciting theoretical developments in combina-
torial game theory. Alongside these advances there has appeared a crop of new
and fascinating examples—games that exhibit a rich, varied, and often amusing
and bewildering structure. Some of these games are new variations on well-
known themes; others test and expand the boundaries and capabilities of the
theory.

This note surveys several of the more interesting recent inventions. The first
two games in our survey, Mem and Mnem, are impartial games with extremely
simple rules, and a structure that bifurcates in a surprising way into regions
of order and chaos. The next, Toppling Dominoes, is a partizan game in
the classical sense, but one with an unusually clear structure. Finally, En-
trepreneurial Chess is an unusual Chess variant, played on an infinitely
large board, with repetition allowed. It therefore violates most of the “classi-
cal” restrictions on combinatorial games, but it nonetheless has a robust and
coherent theory.

None of these games were invented by me. Mnem was introduced by Con-
way; Toppling Dominoes by Richard Nowakowski; and Entrepreneurial
Chess by Berlekamp and Pearson. Some familiarity with combinatorial game
theory is assumed; the discussion of Mem and Mnem uses only the impartial
theory, while the others use the partizan theory and notation as described in
Winning Ways [1].

Taken together, these games illustrate the boundless possibilities of com-
binatorial games. They inhabit a miraculous universe, in which elegant and
mysterious mathematics springs from a few simple rules.

Mem and Mnem

Mem and Mnem are deceptively simple impartial games. They were intro-
duced by Conway a few years ago and, despite their straightforward rules and
“obvious” structure, it appears difficult to prove anything about them!

Mem is played with a heap of tokens. On her turn, a player must remove k
tokens from the heap, provided that k is at least as large as the number of tokens
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removed on the prior turn. If played with multiple heaps, then each heap has
its own “memory.”

We can represent a heap of size n, with memory k, by a pair of integers nk.
Then the legal moves are given by

nk =
{
(n− i)i : k ≤ i ≤ n

}
.

Obviously nk is a P-position if k > n (since then there are no legal moves),
and an N -position otherwise (since there is a move to 0n).

Mnem is just the same, except that a player has the additional option of
adding < k new tokens to the heap (but at least one), instead of removing ≥ k.
When a player exercises this option, the value in “memory” decreases (which
can’t happen in Mem). Denoting a Mnem position by n

∗

k
, we have

n
∗

k
=

{
(n− i)∗

i
: k ≤ i ≤ n

}
∪
{
(n+ i)∗

i
: 1 ≤ i < k

}
.

A game of Mnem needn’t ever end. In fact it’s easy to construct sequences
of moves that traverse an infinite number of distinct positions. For example:

4∗1 → 0∗4 → 3∗3 → 5∗2 → 6∗1 → 0∗6 → 5∗5 → 9∗4 → 12∗3 → 14∗2 → 15∗1 → 0∗15 → · · ·

Here we remove 4 tokens, then add 3, 2 and 1 tokens, leaving 6; then remove 6
tokens, and add 5, 4, 3, 2 and 1 tokens, leaving 15; then remove 15 tokens, and
so on . . .

But remarkably, both players have to cooperate for this to happen! For
example, every 0∗

k
is a P-position: the only legal moves are to positions of the

form i
∗

i
with i < k, which second player can immediately revert to 0∗

i
. If second

player sticks to this strategy, then eventually the position 0∗1 will be reached,
which is terminal.

But from n
∗

k
with k > n, the only legal moves are to positions (n+ i)∗

i
with

i < k, which second player can revert to 0∗
n+i

. So every such n
∗

k
is a P-position,

just as in Mem. And, likewise, every n
∗

k
with k ≤ n is an N -position, since it

has a move to 0∗
n
.

Beyond this, it’s surprisingly hard to say anything at all about the G -values
of either variant. We don’t even know how to play 2-pile Mem! Yet the exper-
imental evidence suggests an extraordinary amount of structure.

Figure 1 shows an intensity plot of G (nk), for all 1 ≤ n ≤ 96 and 1 ≤ k ≤ 32.
It’s a 32 × 96 grid of boxes, colored in grayscale; darker shades indicate lower
G -values. The black triangle in the lower-left is the space of P-positions that
we noted above.

What’s striking are the thin triangular bands that extend in quadratic fash-
ion upwards from the triangle of P-positions. Just above the P-region lies a
region of positions with G -value exactly 1; then a thinner region of positions
with G -value 2; and so on. Amazingly, all of these regions satisfy the following
conjecture.

Conjecture 1. If k2 ≥ n, then G (nk) = �n/k�.
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Figure 1: Intensity plot of the G -values of Mem. The value of nk is plotted at
row k, column n, for 1 ≤ n ≤ 96 and 1 ≤ k ≤ 32. Black = 0, White = 14.

Within the region k
2
< n, the G -values appear to have a complex structure,

consisting of many interlocking, fractal-like triangles. The interested reader will
enjoy computing a larger table of values and observing their striking regularity.

The geometric structure of Mnem seems very similar to Mem, and Conjec-
ture 1 appears true for Mnem as well. However, the fine structure of the k2 < n

region differs.
Here’s an indication of how little is understood about these games: we can’t

even prove the following conjecture, which has been verified computationally for
n, k ≤ 10, 000.

Conjecture 2. Every Mnem position has finite G -value.

Toppling Dominoes

We turn now to partizan games. Toppling Dominoes, invented by Richard
Nowakowski [3], is played with rows of black and white dominoes such as shown
in Figure 2.

Figure 2: A typical Toppling Dominoes position.

On her turn, Left may select any black domino and “topple” it East or West
(her choice). The selected domino is removed along with all dominoes from that
row in the chosen direction.

For example, from the position

Left can move to

or or or
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Although Toppling Dominoes is a straightforward, “classical” combina-
torial game, it exhibits a remarkable amount of structure. It’s easy to see that
every monochromatic row of dominoes is equal to an integer; for example

= 5

since Left will prefer to topple the black dominoes one at a time. More compli-
cated numbers can be constructed by mixing dominoes of both colors, say

=
{

,

∣∣∣
}
= {0, ∗ | 1} = 1

2 .

Here we’ve omitted options that are duplicates under the obvious east-west
symmetry, and used the fact that Left’smove to ∗ is reversible. One can similarly
show that

= 1
4 and = 1

8 and = 3
4 .

(Try it!) In fact every dyadic rational number x (whose demoniator is a power
of 2) can be expressed as a Toppling Dominoes position, using a simple
procedure. Write

x =
m

2n

in lowest terms (i.e., with m odd), and let

y =
m− 1

2n
and z =

m+ 1

2n
.

(In the notation of Winning Ways, x = {y | z} in simplest form.) For example,
if x = 3

8 , then y = x− 1
8 = 1

4 and z = x+ 1
8 = 1

2 .
Then y and z have smaller denominators than x, so we can recursively con-

struct their domino sequences, say Y and Z. In the example x = 3
8 , we have

Y = and Z =

as noted above.
Now for the trick! Write the sequences for Y and Z side-by-side, insert

a black-white pair of dominoes in between them, and amalgamate the whole
enlarged sequence into a single position. This gives a new position X , which
miraculously has value x! For example,

= & &

3
8

1
4

1
2

showing that the example in Figure 2 has value 3
8 .

What makes this construction truly remarkable is that it’s the only way to
represent numbers in Toppling Dominoes. So every number can be repre-
sented uniquely as a single row of dominoes! This remarkable theorem is due to
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Alex Fink, and it has an equally remarkable proof, the details of which can be
found in [3].

Various other familiar values also arise naturally in Toppling Dominoes;
here’s a sampling:

= ∗ = ↑

= ∗2 = �1

= ∗3 = �2

= ∗4 = �3

Entrepreneurial Chess

Here’s an old Chess problem, first posed by Simon Norton, and later publicized
by Guy:

With initial position WKa1, WRb2, and BKc3 . . . what is the smallest
board (if any) that White can win on if Black is given a win if he walks
off the North or East edges of the board? [4]

Berlekamp and Pearson invented Entrepreneurial Chess partly in re-
sponse to this problem [2]. It is played on a quarter-infinite board, such as
shown in Figure 3. Right (White) has a king and rook; Left (Black) has just
a king; and the pieces move just as in ordinary Chess. However, instead of
moving her king, Left may instead choose to cash out. If Left cashes out, then
the entire position is replaced by an integer n, equal to the sum of the row
and column numbers for her king. For example, if Left chose to cash out in
Figure 3(a), the position would be replaced by the integer 7.

5

4

3

2

1

0

...

��������
��������
��������
��������
��������
��������
0 1 2 3 4 5 6 7

· · ·

5

4

3

2

1

0

...

��������
��������
��������
��������
��������
��������
0 1 2 3 4 5 6 7

· · ·

(a) (b)

Figure 3: Entrepreneurial Chess. (a) A typical position; (b) A pathological
position in which the rook has been captured.
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Entrepreneurial Chess is loopy. From Figure 3(a), Left can do no better
than to cash out, while Right is constrained to shuttle his king between the
squares bordering his rook. Writing G for this position, we therefore have

G = {7 | G}

which according to the theory of loopy games [1, Chapter 11], has value 7+over.
Moreover, Entrepreneurial Chess exhibits some explicitly transfinite

values. Consider the position in Figure 3(b), in which Right’s rook has been
captured, and Left is free to run indefinitely far in the Northeast direction.
Writing H for the value of this position, it’s clear that

H > n

for every integer n, and its value therefore exceeds every finite game. However
it’s confused with certain transfinite games, such as the infinite ordinal ω:

ω = {0, 1, 2, 3, . . . |}

On the sum H − ω, Left will prefer never to cash out and play will continue
forever, so the outcome is a draw.

It can be shown that if J is any finite game, and J > n for every integer n,
then J > ω as well. Since H > n for every n, but H is confused with ω, it
follows that H is explicitly transfinite. In fact one can show that, in terms of
the Winning Ways theory, H has the remarkable value

H = on & {0, 1, 2, 3, . . . | H}.

Berlekamp and Pearson have undertaken a detailed temperature analysis
of Entrepreneurial Chess positions. They also solved Norton’s original
problem: the answer is 8× 11.
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4G4G4G10 – Four Games for G4G10 
Jorge Nuno Silva 

 
Latin Erd s 

 
In this game each move consists in placing a disc with a number in a free 
square, provided such a placement does not give rise to any repetition of 
numbers in any row or column. 

 
Example: 

 
In the marked cell no number can be played. 
 
Two players alternate. The first that, on his turn, is not able to play, for not 
having any legal move at his disposal, looses. 
It can happen that the board gets completely filled with numbered pieces. In 
this case the winner is the player that conquered more columns.  
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A column is conquered by the player that, on his move, first gets an 
increasing sequence of length 3 in that column. In this context, increasing 
means that the numbers get larger from the player to his adversary.  
Example: 

B 
4 
2 
3 
* 
* 
A 
 

If player A places 1 in one of the squares marked with *, he wins that 
column (sequence 1-3-4); if the player B places in one of those cells the 
number 5, he wins the column (sequence 2-3-5). 
It can happen that a column contains one increasing sequence of length 3 for 
each player, as in the example 

4 
2 
3 
1 
5 

(1-2-4, 2-3-5) 
 

thus, it is important to know who got his first, or whose turn it was when 
they both got it (whoever makes the move owns the column).  
This game can be played in three ways: 
I (Beginner) – With random factor. In this version the pieces should have 
their faces turned down and the players should turn one in each turn;  
II (Expert) – Complete information. The pieces show their faces at all times 
and each player, on his turn, chooses freely the piece to place in the board. 
III (Gambler) – Mixed. The pieces, with their faces down, are randomly 
divided by the players (12 for one, 13 for the other). The player with 13 
pieces starts.  
Notes 
1) A square filled with numbers according to our rules is called a Latin 
Square. Latin squares were first studied by the Swiss mathematician 
Leonhard Euler in the 18th century. 
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2) In Version II the first player can be sure of always having a legal move at 
his disposal. He should start by placing 3 in the central cell and, after that, 
when his adversary plays x, he should play 6-x in the cell that is symmetric 
with respect to the central square. 
This strategy does not guarantee more columns won at the end… 
3) To be sure that each filled column is won by one of the players, we must  
rely on a mathematical theorem of Erd s and Szekeres from 1935! 
[

Nail 
 

There is a checkered 10x10 board on which two players (Black and 
White) take turns destroying cells according to the following rule. 

 

 
 

On his turn, Black chooses a black cell still alive and kills it. He 
can also kill any number of contiguous living cells in one ortho-
gonal direction from the chosen cell. Three possible moves: 

 

 
 
White’s moves are similar, but he must start at a white cell. Whoever runs 
out of legal moves looses. Black starts. White, in his first move, cannot play 
symmetrically with respect to the center of the board. 
 



GAMES  |  151

LIM 
 
There are three piles of beans. 
Two players alternate. Each move consists of choosing two piles, take the 
same number of beans from each of them and add the same number to the 
third one. The player that, on his turn, finds two empty piles, loses.  
Here is an example of two legal moves: 
 
 

(5,3,7)  (2,6,4)  (4,4,2) 
 
Or, in a diagram: 
 

 
[Mathematical Games, Abstract Games. JPN & JNS, ISBN: 9892005074] 
 

Stooges 

This game uses a diamond shaped board, like the illustrated below. The cells 
of the board have two sides, one black, one white.  

Two players (Black and White) alternate. Black owns three black pieces, 
White own three white pieces. The initial position: 
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On his move, a player must do one of the following: 

• Move one of his pieces to an (orthogonally or diagonally) adjacent 
empty square of his color (white pieces only move on white squares, 
black pieces on black squares). 

• Change the color of a square (from white to black, or from black to 
white) provided the chosen square is empty and it was not switched in 
the adversary's last move. 

Restriction: If two consecutive moves consist of changing colors of squares, 
the next move must consist of moving a piece. 

The winner is the player that builds a line (orthogonal or diagonal) with his 
three pieces.  
[Mathematical Games, Abstract Games. JPN & JNS, ISBN: 9892005074] 
 

 
 
 
Jorge Nuno Silva 
University of Lisbon 
jnsilva@cal.berkeley.edu 
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The Domino Effect (An Elementary Look at the Kruskal Count) 
Jim Wilder 

 
Pictured here is a random layout of dominoes (28 in 
all). Choose any domino from the top row. For 
example, if you take the first domino (3-2), you have an 
added value of 5. Starting at the next domino (6-5), 
spell out the number 5 (F-I-V-E), moving one time per 
each letter, and you will arrive at the 6-0 domino (not 
the 3-3). Like before, spell out 6 (S-I-X), counting and 
proceeding the way you read words on a page. You will 
next arrive at the 3 (T-H-R-E-E). Again, spell out the 
number value where you arrive. Do this until you arrive 
to the bottom row and can no longer move without 

moving off the end of the row.  When you arrive to your final domino, take note of where you 
arrived.  Start the process again, but this time, start on another domino in the top row.  Again, 
take note of where you arrive.  Continue to repeat the process, each time choosing a different 
domino.  What do you notice?  On which domino did you arrive on the first trial?  What about 
the next few trials? 
 
This idea came from various ideas related to the Kruskal Count.  Three of my favorite ideas 
related to this are by Martin Gardner, James Grime, and James Tanton. 
 
This is a diagram of what the "path" should look like if 
you choose the first domino in the top row of the 
original layout.  Taking coins and laying them at each 
domino where you arrive might help you to notice a 
pattern and how you arrive at your final destination 
each time. 

Now, take a regular set of dominoes, and randomly 
arrange them in a 7 X 4 array. See if your results are 
similar to what you have found here.  What happens if 
you lay out the dominoes in a 4 X 7 array?  What 
happens if you count the value of the domino instead of spell it?  How is the outcome similar or 
different if you use a deck of cards, or a page from a book? 
 
References:  
 
Grime, J. Maths card trick: Last to be chosen from YouTube 
http://www.youtube.com/watch?v=uRI4XtnJxXo&feature=related, Accessed 28 March 2012 
 
Michon, G. Kruskal paths to god from Mathematical Magic Tricks – Numericana 
http://www.numericana.com/answer/magic.htm#god, Accessed 28 March 2012 
 
Tanton, J. Twinkle twinkle and math (Tanton mathematics) YouTube 
http://www.youtube.com/watch?v=wNrlQk43pMs&feature=youtu.be, Accessed 28 March 2012 
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So Many Presentations, So Little Time!  
Submitted by Anthony Barnhart 

 
The Gathering 4 Gardner has to be the most diverse conference in the world.  The conference attracts 
participants from a host of different fields.  While there's no question that participants are enthralled for 
the entire conference, every person has one set of talks that they look forward above all others.  Let's use 
a rather unique, magical method to ensure that you'll find a talk that interests you at this year's 
conference!   Imagine that there are 10 talks happening over the course of a day, but you only have time 
to attend the one that interests you the most.  Please gather 12 slips of paper of any size and a pen...I'll 
give you a moment to do so. 
 
Set two of the slips aside.  We won't need them until much later. 
 
You may be interested in talks about art...Whether it be performance art like magic or the art of optical 
illusion.  On one of the slips, right the word "ART."  Leave this piece of paper on the table, with the 
writing facing up. 
 
You may be more interested in the scientific or mathematical topics at the G4G.  These talks are usually 
about solving problems of some kind, so write "PROBLEMS" on another slip and put it on top of 
"ART." 
 
You may not care for the experimental side of problem solving (nobody s perfect!), opting instead to 
focus on mathematical problems.  So, write the word "MATH" on another slip of paper and add it to the 
top of the pile.   
 
As a magician and a psychological scientist, I find myself most attracted to the illusions, so write 
"ILLUSIONS" on the next slip and put it on top of the "MATH" slip.   
 
Illusions need not be only sensory.  Illusions can also happen solely in your mind.  These cognitive 
illusions often constitute the work of a magician.  Write "MAGIC" on another slip and add it to the top 
of the pile. 
 
One trait that's probably shared across the diverse attendees of the G4G is a healthy skepticism that 
naturally falls out of an awareness of science, mathematics, and illusion.  Please write "SKEPTICISM" 
on the next slip and place it on top of the pile. 
 
Skeptics typically don't believe in miracles.  They believe that any miracle is likely to have a natural 
cause, and many so-called miracles involve some kind of trickery.  Write "TRICKS" on a slip and place 
it on top of "SKEPTICISM."  
 
Although I've suggest a lot of categories for talks at the G4G, you may not have a preference for any of 
them.  You may just be interested in attending talks that are interesting.  On the next slip, write 
"INTERESTING" and add it to the pile. 
 
Finally, puzzles of all sorts are ubiquitous at the G4G.  On the next slip, write "PUZZLES" and add it to 
the pile.   
 
On the final slip of paper, write "I PREFER TO HEAR ___________ TALKS" and write your favorite 
category from above in the blank.  Keep in mind that some things are naturally plural, like tricks, 
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puzzles, and illusions, while others are singular.  Set this slip aside and pick up the other nine.  Make two 
piles as follows:  Take the top slip, which has the word "PUZZLES," and set it to your left on the table.  
Set the next slip to your right.  The next one, "TRICKS," goes on top of the first--then another on top of 
the second--and so forth with the rest of the slips as if dealing hands of cards. 
 
The word "ART" is on one of the slips that ended up on top.  Take that pile of slips and drop it on top of 
the "PROBLEMS" pile.  Turn the whole pile over, so that the writing faces down.  Take the bottom slip, 
with "ART" on it, and imagine that the table has a clock drawn on it.  Since this is the 10th Gathering 4 
Gardner, place this slip, writing side down, at the imaginary 10 o'clock position on the clock.   
 
Take the next slip from the bottom, which is "MATH," and set it writing down at the 11 o'clock position.  
Continue removing slips from the bottom of the pile and placing them at the appropriate clock positions, 
moving clockwise.  You'll run out of slips at 6 o'clock.  Set the "I PREFER" slip at 7 o'clock.  Then use 
the two blank slips to fill the remaining clock positions. 
 
Put your finger on the "I PREFER" slip.  Think of the category you most prefer, and, starting with the 
slip at the 8 o clock position, spell the name of this category, moving your finger clockwise from one 
slip to the next for each letter.  For example, if you want "MAGIC," you'll spell the "M" on the slip at 8 
o'clock, the "A" on the slip at 9 o'clock, and so on.  Stop on the last letter of the word. 
 
Keep your finger on the slip you reached.  Gather the rest of the slips in any order and put them away in 
a separate pile.  Turn over the slip under your finger and see if it matches the type of talk that you'd most 
like to see at the G4G.  If so, I hope to see you there!  Amazing! 

 
Adapted from Tamariz, J. & Navarro, G. (2008). Barbecue party. Verbal Magic (pp. 73-76). Seattle, 
WA: Hermetic Press, Inc. 
 
Note from Tamariz and Navarro (2008), p. 76: 
   

This trick uses the idea of progressive spelling: the principle of employing words or names, each 
of which has one more letter than the previous one.  The principle dates back at least to the 
1920s.  Dr. James Elliott may have been the first to employ it.  Another principle active here is 
that of The Tapping Trick  or Tapping the Hours,  which appears in texts as far back as the 
late fifteenth century.  Early descriptions of it appear in Luca Pacioli s De viribus quantitatis  
(1486-1509) and Horatio Galasso s Giochi di carte  (1593).  The innovation of using pieces of 
paper with words on them almost certainly belongs to Stewart James, who used it in The Last 
Drink,  in the August 1962 issue of New Tops  (Vol. 2, No. 8, p. 18). 
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The famous Petersen graph is on the left
in its usual incarnation, but really the

Petersen is just another appearance of the
Mobius strip.

I.   A Self-Reproducing Loop 
(Courtesy of Kurt Reidemeister and 

Sam Lloyd)

This shows how one loop could become two 
loops in a series of actions that almost looks 

topological.
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The Quaternions P

Yes. There they are the quaternions i,

We hope that this is self-explanatory, and 
that you will go home and use the Mobius
band to design a circuit to control the light

at your front door from switches in 
every room in your house.
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Here we have Euler’s beautiful formula and an 
iconoclastic formula for Pi that is obtained by 

solving for Pi in Euler’s formula.  The formula for 
Pi is correct! 

ji = -k
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VI.

π = ∞(
(−1)1/∞ − 1√−1

)
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This Seventh Tale illustrates the
Russell Paradox or lack of it in
Knot Set Theory where a bit of 

curve A overcrossing another bit of 
curve B means that B is a member of A.

Then a diagram with a curl is a member of itself.
But curls come and go topologically.

Also you will see
Ax to mean “x is a member of A”.

y
Rx = ~ xx

and the paradox is
RR = ~RR.

VII.
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VIII. KLEIN BOTTLE  = Union of Two Mobius Strips.
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X.  The Wheeler Universe and 
the Knot Wheeler Universe

Here is John Archibald Wheeler’s
Universe. The letter U looks back to the Big 

Bang and by observing Itself, brings the 
Universe into being. 

IX.  My Favorite Four-Cube
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Here is the KnotWheeler Universe, a 
slight correction to JW’s point of view.

LHK



172  |  MAGIC



MAGIC  |  173



174  |  MAGIC



MAGIC  |  175



176  |  

158

List of Authors G4G10  |  VOLUME 1

Barnhart, Anthony

19Calkin, Neil

93Carvalho, Alda

95Cipra, Barry

99Colwell, Jason

21Demaine, Erik D.

21Demaine, Martin L.

101, 160Farrell, Jeremiah

23Fathauer, Robert W.

31Fisher, Gwen

110Hawksley, Andrea

136Hettle, Cyrus

38Hizume, Akio

160Hofmeister, Connor

43Iwai, Masayoshi

113Iwasawa, Hirokazu

163Kauffman, Louis H. 

117Kotani, Yoshiyuki

45Lang, Robert J. 

172Levy, Doron

123Moscovich, Ivan

47Orman, Hilarie K. 

125Plambeck, Thane E. 

131Pnueli, Ayelet

86Butters, Jerry

135Polster, Bukard



|  177

148Silva, Jorge Nuno

List of Authors G4G10  (cont.)

136Schneider, Robert P. 

142Siegel, Aaron N. 

153Strickland, Henry

55Swanson, Craig

65Terlep, T. Arthur

125Whitehead, Greg

156

66

Wilder, Jim

Zivkovic, Zdravko

93

50

Santos, Carlos P.

Sandfield, Robert

31Turnover, Florence





Published by:

An aura of magic permeates a Gathering 4 Gardner. It’s not just the 

presence of magicians, eager to display amazing feats of sleight of 

hand and sleight of mind. It’s the pervasive spirit of ferocious 

creativity and antic playfulness among all the participants, whether 

magician, mathematician, artist, writer, inventor, engineer, scientist, 

toymaker, or puzzle master, that makes a Gathering such an 

enchanting and exhilarating experience.

 

Numbering in the hundreds, the members of this potent jumble are 

there to honor and remember Martin Gardner, whose many 

writings, particularly on recreational mathematics and magic, have 

had such a profound and lasting influence on their lives.

—excerpt from the Preface by Ivars Peterson

Atlanta, Georgia
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