Clueless Word Puzzles

Frederick Henle (fredhenle@gmail.com)

for G4GX

numeric puzzles

For the past couple years, Gerard Butters and James Henle (also attending G4GX) have been exploring with me what we call clueless puzzles, similar to Sudoku or KenKen, but with the aesthetic that the puzzle be empty of clues, that is, not partially filled in. There still have to be constraints to ensure that each puzzle has a unique solution, but we prefer global constraints and constraints based on the shape of the puzzle.

The puzzle is an $n \times n$ array of empty boxes, and the solution is a Latin square, where each row and column of the array is a permutation of the numbers $\{1, \ldots, n\}$. In other words, no number may appear more than once in the same row or in the same column. In common with KenKen, our puzzles are also partitioned into groups of adjacent boxes (sometimes called cages) with some constraint applied to them. For example, in this puzzle

![Puzzle Image]

the numbers in each of the nine regions must add up to the same sum. Each row is a permutation of $\{1, 2, 3, 4, 5, 6\}$ and therefore must sum to 21. There are six rows and nine regions, so the sum is $6 \cdot 21/9 = 14$ per region.

For a great many more puzzles of this variety, see

http://fredhenle.net/puzzles/

word puzzles

I’ve always loved word games and puzzles, and so I wished to develop something similar to the clueless numeric puzzles, but using letters instead of numbers. Each row and each column should be a word—this is known as a word square. If we also define regions of boxes, each region should also form a word.

In the spirit of G4GX, I consider only the letters [MARTINGARDNER], or [ADEGINNRT]. As a further constraint, just as with Latin squares, no letter should appear more than once in any given row or column. I use The Word List (TWL06) which is a standard list of words for word game tournaments.

At the end, I provide a list of words which might be used as a row or column in one of these puzzles.
Here is an example:

```
G N A T
R A M I
A M I E
T E N D
```

Note that each row and each column is a word, and each region also defines a word. All regions are narrow enough that there is no ambiguity in the order of the boxes within the region—the first letter of the word is the leftmost topmost box, and each box is adjacent only to at most two other boxes.

Having defined what a solution should look like, it's less clear what the puzzle definition should be; that is, what information should be given in order to make the puzzle neither trivial nor intractable. With the numeric puzzles, there is often a clear mathematical and logical path to the solution. Here are a few possible ways to turn the solution into a puzzle:

- Provide the empty regions, with no guidance on the words:

```
. . . .
. . . .
. . . .
. . . .
```

This is open-ended enough that there is probably not a unique solution.

- Provide the list of words that go in the regions, but not the regions themselves: `A, GRATE, MIND, NAM, TIE`. For any puzzle of this type, there is always a pair of symmetric solutions, unless both the word square and the regions are symmetric.

- Provide both the empty regions and the list of words to fill it. This is probably much too easy. In this example, there are only two possible ways to attempt it, since all but two of the regions are different lengths.

Ready for some actual puzzles? Try these:

1. Fill the following 4×4 word square:
With the added constraint that that only six different letters out of [MARTINGARDNER] are used in this square, the solution is unique.

2. Fit the following words into a 4 × 4 word square: AGIN, GRATING, MI, RAD. It’s acceptable for the word GRATING to have the letter G twice because they are not in the same row or column.

3. Find a 4 × 4 word square that can be partitioned one way and filled with AGE, EM, GAD, I, ID, ME, RID or partitioned a different way and filled with AD, DE, EGAD, GEM, I, I, MIR.

4. Fit the following words into a 5 × 5 word square: AM, AMEN, DIM, EN, GENT, RAGE, RAM, I, TA. The word square is symmetric, but the arrangement of regions is asymmetric, so there is a pair of solutions.

It turns out that there are no word squares of order six or higher using only the letters [MARTINGARDNER] and allowing no letter to appear more than once in a given row or column. There is only one such word square of order five, and like many word squares, it is symmetric (the five rows are the same as the five columns). There are hundreds of word squares of order four, even if you ignore the symmetric ones.

word lists
These are all the words in TWL06 containing only the letters [MARTINGARDNER] and containing no more than one of each letter. TWL06 does not include any one-letter words, but of course I also accept A and I as valid words.

1. A I
2. AD AE AG AI AM AN AR AT DE ED EM EN ER ET ID IN IT MA ME MI NA NE RE TA TI
3. AGE AID AIM AINE AIRK AIKI AM AV ANB ANE ANI ANO ANP ANQ ANR ANS ANT ANV ANX ANY AR ARB ARC ARI ARX ATS AUIA AUR
4. ADIT AGED AGER AGIN AGI AID AINE AIRK AIKI AM AV ANB ANE ANI ANO ANP ANQ ANR ANS ANT ANV ANX ATS AUIA AUR