
/dev/joe Crescents and Vortices
by Joseph DeVincentis

Introduction

Erich Friedman posed this problem on his Math Magic web site in March 20121: Find the shape of largest area such that N of them, in 
total, fit into two different shapes. In one variation of the puzzle, the shapes were circles of diameters 2 and 3, and once N was 
sufficiently large, the solutions that people (including Maurizio Morandi, Jeremy Galvagni, Andrew Bayly, and myself) were finding 
tended to be concave shapes that nested together in two different ways to fit inside the two circles. I discovered an interesting series of
shapes of this sort which I named /dev/joe crescents. It appears that Bayly's solution for N=9 is in fact one type of /dev/joe crescent, 
but I generalized the type and built many more solutions on this model.

Since they are meant to fit into circles, it is natural that their edges consist entirely circular arcs. This makes
them relatives of Reuleaux polygons. In Reuleaux polygons, these arcs are centered at the vertices, a
property which makes them have constant width. In /dev/joe crescents, the arcs are not centered at the
vertices, but are determined in quite a different way, which leads to some very odd looking shapes.

The governing rule that determines this shape is that they fit together, rotated with respect to one another,
inside a circle. Although the shape above has 6 distinct arcs, I think of it as having 3 edges: the outside (the
single arc which is much longer than the rest), the leading edge (the other 2 arcs on the convex side), and the
trailing edge (the 3 arcs on the concave side).

In this shape, which I call a type 1 crescent, all of the arcs are from circles of radius 1. The three edges which
appear to be the same size are in fact the same size. Four of the angles between arcs which (two inner and two outer) are the same. 
S=3 indicates that three of these fit inside a circle of diameter 2, so the outside edge is 1/3 of a circle.

One arc on the leading edge is the same length as two of the
arcs on the trailing edge. That one arc can be aligned against
either of the other two. One way, it takes S=3 pieces to go
around a small circle with all of the outside edges forming
that circle. The other way, L=7 indicates that it takes 7 of
these wrap around and meet up with the first shape to make a
circular pattern, with each outside edge tangent to the circle.

This creates two striking (and strikingly different) patterns.
The small circle resembles a sort of vortex of fluid swirling
into the central hole, and for this reason I gave the name 
/dev/joe vortex to these circular patterns. There is also an
optical illusion here which makes it possible to view it as a 3-
dimensional shape, a bar of triangular cross-section which has
been bent into a loop and twisted like a Möbius strip,
although my impression of it is that it has a full twist, and so does not have the one-sidedness that comes with a Möbius strip. This 
illusion works better for some S,L pairs than for others.

In the large circle, the pattern looks like a set of rather oval
dominoes which have been set up in a tight circle and toppled
into one another. The way that each piece completely fills the
concavity in the next piece creates this illusion. It's not
always that way, but when the ratio of S:L is appropriate for
filling a large portion of the area of the circles, it commonly
is. Despite the very different appearance, it's the same tile
used in both patterns.

Since the areas of the two circles are in the ratio 4:9, and the
goal was to fill as large a portion of the two circles as
possible, the number of pieces used in the small and large
circles should be close to this ratio in order to fill a large
portion of the circle. However, there is nothing preventing the
creation of vortices using numbers quite different from this
ratio; it just creates a large hole in the middle of one of the circles, as in the case for S=3, L=11, shown in Figure 3.

1 http://www2.stetson.edu/~efriedma/mathmagic/0312.html

Fig. 2: /dev/joe vortex of type 1 for S=3, L=7

Fig. 3: /dev/joe vortex of type 1 for S=3, L=11

Fig. 1: A single /dev/joe
crescent of type 1 for S=3,

L=7



Determination of the Shapes

The shape of a crescent is determined by the outside (which is always 1/S of a circle), the length of the common arc, and the angle 
between two arcs. In the larger circle, only a part of the outside arc is actually on the outside of the overall shape. Part of the outside 
arc lies against one of the common arcs from the trailing edge of another crescent. The portion of outside arc which can actually fit on 
the outside is determined by the overlap of L equally spaced circles of diameter 2, each internally tangent to the circle of diameter 3. 
The common arc is the difference between these two arc lengths, and can be determined purely as a function of S and L. A detailed 
derivation appears below.

The preceding construction also determines the sharp angle between the outside arc and the trailing edge. In the small circle, this sharp
angle forms a smooth edge with the angle between the outside arc and the leading edge of another piece at the edge of the circle, and 
that is one of the common angles, so this sharp angle determines the common angle.

The shapes I have shown so far all have 6 edges, but this is not always the case for /dev/joe crescents. A crescent ends when the 
leading edge and trailing edge intersect. The final arc on each edge is cut short at this point. Two additional parameters, A and B, are 
defined as the number of arcs making up the leading and trailing edges, respectively. They aren't always 2 and 3. In typical cases 
which are good candidates for the area maximization of the original problem, usually A=S-1 and B=S.

Special Cases

In some cases, as in the one shown in Figure 2, the hole in the
center cannot be filled, because in the small circle it is
bounded entirely by portions of the trailing edge, while in the
large circle it is bounded entirely by portions of the leading
edge. However, as seen above in Figure 3 for S=3, L=11, this
is not always the case. When the last partial arc of trailing
edge is longer than the last partial arc of leading edge, and
B=A+1, both holes are bounded by trailing edge. When this
happens, the solution can be improved by adding a small
projection to each piece, such that the entire hole in the center
of the large circle is filled. These bits will protrude into the
much larger hole of the small circle, giving that hole a shape
like a sawblade. 

At the other extreme in S:L, there are cases where the common edge is too short for the leading
and trailing edges to intersect, and instead the edges curl back on themselves. In these cases, at an
appropriate point the edges can be ended and simply connected straight to the middle of the small
circle. This happens for S=3, L=5 as shown in Figure 4.

A very special case occurs when L=2S. This seems to cause A=B=S and for the leading and
trailing edges to intersect in the center of the circle, with the final arcs bisecting one another,
resulting in a completely filled small circle without any need to deviate from the standard design.
When I tested the S=3, L=6 shape I got a shape which I think is identical to Bayly's solution for
this case. Figure 5 shows this and the next two members of this family of solutions.

Type 2 Vortices

In the original problem (whose goal, remember, was to maximize the area covered), only the total
number of pieces N=S+L was specified, not the individual values of S and L. However, each S,L
pair has a maximum theoretical area which is reached when one of the circles is completely filled;
either Nπ/S if the small circle is filled, or 9Nπ/4L if the large one is filled. By the time I
developed this strategy, there were already solutions for most cases up to N=16 which covered
enough area that only the S,L pair with the largest value of this area limit even had a hope of
matching that score. And in some cases my solutions did not measure up. When more of the
larger circle was filled, I noticed that the central hole was sometimes quite tiny, and the area
would not be large enough to reach the goal even if it was filled in. The problem was that I had
made the outside be made of arcs of radius 1, and this left some little slivers of area along the edge of the circle which could never be 
filled.

This led me to develop a second type of crescent, one where the outside was an arc of radius 1.5. This allowed the slivers along the 
edge to be captured, while losing slivers along the edge of the small circle, which had area to spare.

It turns out that inscribing S arcs of radius 1.5 and length equal to 1/L of the large circle along the inside of the small circle does not 
completely fill the small circle for typical S:L ratios. The natural thing to do then is to space them equally and let the remaining space 
along the edge of the small circle become another edge of the shape. So the outside now consists of two arcs, one of radius 1.5 and one

Fig. 4: /dev/joe vortex of type 1 for S=3, L=5 (with A=B=4 and then connected
to the center)

Fig. 5:  /dev/joe vortices of type 1 for
L=2S, S=3 to 5



of radius 1. Since in the large circle, the arcs of radius 1.5
completely fill the edge, those arcs are always on the outside
and never nest against another arc. Instead, the arcs of radius
1 become the common arcs that are repeated along the
leading and trailing edges. This leads to solutions like the one
shown in Figure 6.

Type 3 Vortices

It is possible that for some systems very close to the S:L ratio
of 4:9, a hybrid approach in between these two may provide a
better area. In this shape, part of the border is an arc of radius
1.5 but it is less than 1/L of a circle. This is a subject for
further research and will not be covered here.

Mathematical Basis of the Construction

I applied geometry and trigonometry to diagrams of the figures I was drawing to determine the placement of the various points 
necessary to draw these diagrams and determine their areas.

Begin by constructing a circle of radius 1.5 and a sector of that circle of angle 2π/L bisected by a horizontal radius of the circle. An 
angle π/L appears above the horizontal and another π/L below it. Now draw a sector of radius 1 and angle 2pi/S, tangent to the circle 
at its intersection with that same horizontal, and with its bottom point on the lower radius of the first sector. Necessarily, the distance 
between the centers is 1/2. The arc of radius 1 drawn here is the outside edge of the crescent. The part which lies inside the first sector 
is the part which lies on the outside when the crescents are placed in the larger circle; symmetry requires that this arc exactly fits in the
sector of angle 2π/L.

Let A be the intersection of this arc with the upper radius of the first sector. Draw another radius inside the second sector, to A. This 
divides the second sector into two pieces, an upper portion of angle φ and a lower portion of angle θ which is itself bisected by the 
horizontal radius; φ+θ=2π/S. In addition, define β = (π-φ)/2 as one of the equal angles in this triangle with edges 1, 1, d. 

Construct a vertical line through A, and define x to be the distance along this vertical line from A to the horizontal radius, and y the 
distance from the center of the sector of radius 1 to the right angle just created. Construct a chord across the sector of angle phi; define
d to be its length. This produces Figure 7.

Now we have sin(θ/2) = x and tan(π/L) = x/(y+0.5) and also x2+y2 = 1. Solve the last equation to get y = (1-x2)1/2, and substitute it 
into the second equation:

tan(π/L) = x/((1-x2)1/2+0.5)

x = tan(π/L)((1-x2)1/2+0.5)

x = tan(π/L)(1-x2)1/2+0.5 tan(π/L)

x-0.5 tan(π/L) = tan(π/L)(1-x2)1/2

Now square both sides to eliminate the square root:

(x-0.5 tan(π/L))2 = tan2(π/L)(1-x2)

x2+0.25 tan2(π/L) - x tan(π/L) = tan2(π/L) - x2tan2(π/L)

x2(1+tan2(π/L)) - x tan(π/L) - 0.75 tan2(π/L) = 0

Solve the quadratic for x:

x = (tan(π/L) +/- (tan2(π/L)+3tan2(π/L)(1+tan2(π/L)))1/2)/
(2+2tan2(π/L))

x = (tan(π/L) +/- (4tan2(π/L)+3tan4(π/L))1/2)/(2+2tan2(π/L))

Pull a tan(π/L) out of the numerator:

x = (1 +/- (4+3tan2(π/L))1/2)tan(π/L)/(2+2tan2(π/L))

As long as L is at least 3, the tangent has a positive value. For

Fig. 6: /dev/joe vortex of type 2 for S=3, L=8

Fig. 7: Construction used to determine length of outside and common arcs for 
Type 1 vortices. S=3 and L=7 for this example.



x to be positive, we need the first term to be positive, and
(4+3tan2(π/L))1/2 > 2, so we need the positive choice of the +/-
sign.

x = (1 + (4+3tan2(π/L))1/2)tan(π/L)/(2+2tan2(π/L))

It's possible to apply other identities here but it doesn't really
get much simpler than this. This form is useful in that it only
requires calculating one trig function to numerically calculate
x from L. Since sin(θ/2) = x means θ = 2 asin(x), we can
calculate θ from L as well.

We also have φ = 2π/S – θ and d = 2 sin(φ/2).

We don't need x and y in the diagram any more. They were
merely a means to calculate θ from L. Drop them (and the
vertical line which was of length x), and duplicate the
remaining lines rotated counterclockwise by 2π/L. 

Connect the centers of the two sectors of radius 1 with a line
segment. If this was repeated all the way around the circle, the
segments like this would form a regular L-gon with
circumradius 1/2. Let n be the length of one of these lines.

n = 1/2 (2 sin(π/L)) = sin(π/L)

Also, define γ as the angle at A in the triangle now formed
with sides 1, 1, n. So γ/2 = asin(n/2) or γ = 2 asin(n/2). This yields Figure 8.

The next goal is to add another arc to the shape to the left of the arc with chord d. It
will be congruent to that arc, and share one endpoint with it. The angle at which this
arc is drawn must be determined.

I used the angle between chord d and the corresponding chord for the next arc. In
order to do this, we need to take the drawing here and place it on the small circle,
centered at the center of the small sector from the upper tile. Some superfluous lines
have been removed, but we need to keep the entire upper tile and the arc with chord d,
since it forms part of the trailing edge of our tile. This produces Figure 9.

The next tile would be properly placed at the same center and rotated by 2π/S. See
Figure 10. The arc with chord labeled d in the upper tile forms part of the leading
edge of the lower tile. I used the angle between the two chords (d and its adjacent
copy) to determine the placement of the succeeding arcs. This angle α is composed of
two copies of the angle, β, between the chord and one of its radii minus the
overlapping section, γ. The whole angle α = 2β - γ = π - φ – γ.

Now we can dispense with the extra lines and just draw copies of this sector such that
their chords form angles α until the
leading and trailing edges meet. This
is shown in Figure 11. It looks as if
parts of three of these sectors and
chords form a trapezoid, but it's a
near miss and the two segments that
appear to coincide to form the long
edge actual intersect, form an angle
of less than one degree. 

The Surprising
Coincidence

In the previous construction, for S=3
and L=7, θ is some irrational
fraction of a circle, and so are φ and
γ. But α works out to exactly 13π/21.
So if I continued drawing these arcs Fig. 11: Completing the tile.

Fig. 10: Two copies of the partial tile on the small
circle.

Fig. 9: Moving to the small circle

Fig. 8: More of the construction



and chords until I had drawn 21 of them, they would then start to coincide after I've
drawn 21 chords. These chords form the perfect star polygon {21/4} (Figure 12), that
is, a polygon with 21 equal sides and 21 equal angles which loops 4 times around the
center, with each vertex is connected to the 4th nearest one on either side. 

Why is this? Why should these shapes lead to such an angle? It works for other cases,
too. In general, the chords form a star polygon {SL/(L-S)} (with any common factors
divided out). In the L=2S special case, the polygon is {SL/S} or a simple regular L-
gon. 

Proof of this angle: Go back to the diagram in the large circle which features the
segment x, but extend it to length 2x all the way across the chord of angle θ. Repeat
this all the way around the large circle so that these segments form a regular L-gon. 
See Figure 13.

Each angle of this L-gon is composed of two copies of the angle shown here as η
which, due to the triangle it is in, is (π-θ)/2, and one copy of γ. Since it's the interior
angle of a regular L-gon, it measures π - 2π/L. So π - 2π/L = π - θ + γ, or γ = θ - 2π/L.
But α = π - φ - γ and φ = 2π/S - θ, so α = π - 2π/S + θ - θ + 2π/L = π - 2π(1/S-1/L) = π
- 2π(L-S)/SL. So SL copies of this angle add to (SL - 2L + 2S)π, which is exactly the
angle we need to make the star polygon {SL/(L-S)}.

It's easier to see this if you take the supplementary angle π-α, which equals 2π(L-S)/SL, which is just enough to bend the polygon 
around L-S full revolutions after SL copies of the angle.

The Arc-Through-the-Center
Coincidence Proven

There is still the unexplained coincidence in the L=2S cases
where the arc passes through the center of the small circle.

In these cases, the polygon has an even number of sides, and
the distance of interest is the distance from the midpoint of
one arc to the midpoint of the opposite arc. Aside from the
conclusion I want to reach that this distance is 1, it's hard to
measure this relative to any of the rest of the problem. But
draw a segment bisecting each sector. These segments for two
adjacent sectors intersect at some distance from the arc's
midpoint (and another distance from the center about which
the arc is drawn) which by symmetry is the same for both
sectors. It's the same by symmetry for each pair of adjacent
sectors, so it is the same for all of them, and all of them
intersect in a single point, C. The distance from this C to the
arc's midpoint B is half the distance of interest. 

To find the length of segment BC, I calculate the distance
from C to
the center D
about which
the arc is
drawn, and
subtract that
from the
known radius, 1. CD and its counterpart in the adjacent sector form two legs of an 
isosceles triangle, where the third side is the segment identified earlier as n = 
sin(π/L). These segments of length n form another star polygon similar to the one 
formed by the chords, so the angle at C is (L-S)/SL of a full revolution, or 2π(L-
S)/SL.

So CD / (n/2) = sin(π(L-S)/SL) or CD = sin(π(L-S)/SL) / 2sin(π/L). In the special 
case where L=2S, sin(π(L-S)/SL) = sin(π/L) so CD = sin(π/L) / 2sin(π/L) = 1/2. That 
makes BC also 1/2, and this is why the distance from arc midpoint to opposite arc 
midpoint is 1 in these cases.

Fig. 13: The L-gon of chords of length 2x.

Fig. 12: Star polygon {21/4} formed by iterating
chords across common arcs of the S=3, L=7 tile
well beyond the point needed for its leading and

trailing edges to meet.

Fig. 14: Bisecting the sectors
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