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Introduction 
 
Sun Bin was a legendary Chinese military strategist who lived more than 2000 years ago. Among 
other exploits, he is credited with helping his patron, general Tian Ji, defeat the King of Qi in a 
match consisting of three horse races. If Tian Ji had simply raced his top horse against the King’s 
top horse, his second against the King’s second, and his third against the King’s third, he would 
have lost all three races. 
 
But Sun Bin had an idea. He told Tian Ji to race his worst horse against the King’s best, his best 
against the King’s second-best, and his second-best against the King’s worst. In this way, Tian Ji 
won two out of three races. 
 
Of course, Tian Ji was a little bit lucky. If we denote his horses by A, B, and C and the king’s 
horses by a, b, and c, and if we rank the horses by speed, they happened to fall in the order a > A 
> b > B > c > C. It’s easy to see with 20/20 hindsight that Sun Bin’s strategy works here, because 
A > b and B > c. Had the horses been in a different order, say a > b > c > A > B > C, then Sun 
Bin’s strategy would not have worked (but neither would any other strategy!). 
 
A key point to realize, though, is that Sun Bin’s strategy does not depend on knowing the relative 
speeds of all six horses in advance. We only need to know the rankings of each side’s horses: 
that is, we only need to know that A > B > C and a > b > c. Given only this information, Sun 
Bin’s strategy of racing C against a, A against b, and B against c is the optimal strategy in two 
different ways: It gives him the best odds of winning the match, and gives him the largest 
number of expected races won. I will justify these claims in this paper. 
 
Now, let’s bring Sun Bin’s problem into the twenty-first century. What happens if we have a 
match of N horses against N horses? Can we find an optimal strategy for winning the match? 
How about for winning the largest expected number of match races? The answer to both of these 
questions is yes, and the goal of this paper is to answer both questions. The second one is much 
harder, and (in my opinion) much more interesting mathematically. 
 
To define the problem a little better, I prefer to phrase it in terms of a card game. The deck has 
2N cards, with face values from 1 to 2N (2N being high). Player 1 receives N cards, face down, 
and player 2 likewise. Neither is allowed to see the cards in his hand or the other player’s hand. 
However, the cards are placed in rank order in front of each player, so that each player knows the 
relative ranking of his own cards and the opponent’s cards. On the first trick, player 1 plays one 
card (still face down) and player 2 plays one against it. Play continues in this fashion (player 1 
always going first!) until all the cards have been played, and then both players reveal their cards. 
The winner is the one who takes the most tricks. What is player 2’s optimal strategy? 
 



It is easy to see that this is equivalent to an “idealized” version of the horse problem, in which 
the faster horse always wins the race. I prefer the card version because (as is well known) horses 
do not always race according to form, and faster horses sometimes lose to slower horses. In the 
card version, there are no such ambiguities: card 7 always beats card 6, and that is that.  
 
To me, the N-card (or N-horse) version of Sun Bin’s problem is extremely natural, and it is a bit 
of a mystery why it seems to be nearly absent from the mathematical literature. The only 
reference I have been able to find is [AGY], written in 1979, and even that reference is cursory. 
The authors simply noted that the problem reduces to a linear assignment problem, and therefore 
there exist fast computer algorithms (the Hungarian Algorithm) to solve it. 
 
A college friend of mine, Howard Stern, independently posed this problem in his first year of 
graduate school, in 1980. He made, in my opinion, some extremely impressive progress towards 
a solution, and arrived at a correct conjecture for the general strategy, but he was unable to prove 
it. In the three decades since then, he has showed the problem to a number of mathematicians 
and computer scientists, always thinking that somebody would know a solution or a general 
theorem that would solve the problem. However, none of them did. Finally, he asked me in 2012, 
and very soon I was hooked on Stern’s problem! The proof of his conjecture turned out to be a 
fascinating mix of group theory, probability, and combinatorics. 
 
What’s more, I believe that the solution has some relevance to the general theory of linear 
assignment problems. Stern’s original, unpublished work from 1980 appears to be a novel 
observation about what I call mixed-Monge optimization problems. And the first step of my 
proof of Howard’s conjecture also involves a general result about symmetric mixed-Monge 
optimization problems. 
 
Gary Antonick wrote a post about Stern’s problem in his “Numberplay” blog for the New York 
Times on January 13, 2014. It became his most-commented-on blog post in more than a year. I 
am indebted to one of his readers, a reader known to me only as Lee from London, who pointed 
out the ancient Chinese legend of Sun Bin. This is surely the first appearance of the problem in 
recorded history, so I think it is only appropriate to call it “Sun Bin’s Legacy.” 
 
At this point I would strongly encourage readers to play the card game and see if they can figure 
out the strategy themselves, before reading on. Antonick’s post [A] includes a wonderful applet 
by Gary Hewitt that will enable you to play against the computer online with 3 to 7 cards. 
 
The main theorem of this paper is as follows: 
 
Main Theorem. For sufficiently large N, the optimal strategy for player 2 is to play his cards in 
the order (1, 2, …, k, N, N-1, …, k+1) for some k. In other words, he plays his lowest card (1) 
against the opponent’s highest, his second-worst card against player 1’s second-highest, etc. 
Note that k represents the number of tricks that player 2 should (try to) “throw” or lose on 
purpose. This strategy is optimal in the sense of maximizing the expected number of tricks won. 
The optimal number k = k*(N) is given by the following formula: 
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Comments on the Main Theorem: 
 
(1) There is also a somewhat simpler “approximate” formula k ≈ k(N):  
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It is approximate in the sense that k*(N) – k(N) = 0 or 1. In fact, I do not know a single value of N 
for which k(N) ≠ k*(N). 
 
(2) Stern conjectured the general form of the optimal strategy in 1980, but did not make a 
conjecture for the optimal number k*(N) of tricks to throw. At that point there was not enough 
data to make a conjecture, and it is highly unlikely that anyone would have come up with the 
formula above anyway. It was a complete shock to me that I was able to derive an exact formula. 
 
Here is a table of the optimal number of tricks to throw for small values of N: 

N k N k 
2 n/a 9 2 
3 1 10 2 
4 1 11 2 
5 1 12 2 
6 1 13 3 
7 2 14 3 
8 2 15 3 

And here are two “worked examples,” showing the first two jumps in k*(N).  
 
Example 1: N = 7. Here the approximate formula tells us to look up the 14-th row of Pascal’s 
triangle and add the terms until we get a sum that is greater than the central element. We find that 

1 + 14 + 91 + 364 + 1001 + 2002 = 3473 > 3432. 
Then the approximate number of tricks to throw is (N+1) minus the number of terms added: in 
this case (7 + 1) – 6 = 2. 
 
For the exact computation, we add a couple of squared terms from the 7-th row:  

1 + 14 + 91 +364 + 1001 + 2002 + 12 + 72 = 3523 > 3432. 
Thus the exact number of tricks to throw is at least 2. On the other hand, if we try throwing one 
more, we get 

1 + 14 + 91 + 364 + 1001 + 12 + 72 + 212 = 1962 < 3432. 
Thus the exact number of tricks to throw is at most 2, and hence the exact formula agrees with 
the approximate formula. 
 
Example 2: N = 13. Now we look up the 26th row of Pascal’s triangle and add up the terms until 
we get a sum that is greater than the center element. We find that 

1 + 26 + 325 + 2600 + 14950 + 65780 + 230230 + 657800 + 1562275 + 3124550 + 5311735 = 10970722 > 10400600. 
Therefore the approximate number of tricks to throw is (N + 1) minus the number of terms 
added, i.e. (13 + 1) – 11 = 3. 
 
The exact computation involves adding some squared terms from the 13th row. Because 

1 + 26 + 325 + 2600 + 14950 + 65780 + 230230 + 657800 + 1562275 + 3124550 + 5311735 + 12 + 132 + 782 > 10400600 
we can be certain that the exact number of tricks to throw is at least 3. And because 



1 + 26 + 325 + 2600 + 14950 + 65780 + 230230 + 657800 + 1562275 + 3124550 + 12 + 132 + 782 + 2862 < 10400600 
the exact number of tricks to throw is less than 4. Hence the exact number of tricks to throw is 3, 
which agrees with the approximate computation. 
 
These two examples are completely typical. The additional “nuisance terms” from the N-th row 
of Pascal’s triangle, even though they are squared, are dwarfed by the largest terms from the 
(2N)-th row. This is why the “approximate” formula agrees with the exact formula in every case 
I know of. 
 
(3) It is also of interest to derive upper and lower bounds for the exact number of tricks to throw. 
After all, if you are playing the game with N = 200 cards, it may not be so easy to look up the 
400th row of Pascal’s triangle! I prove the following estimate in this paper: 
 
Theorem: If N > 400, then the optimal number of tricks to throw satisfies the inequalities 

€ 

N lnN /4 < k*(N) < N lnN /2 . 
Computer calculations by Stern show that these inequalities hold for 400 ≥ N ≥ 91 as well. The 
left-hand inequality is false for N = 90. 
As N → ∞, k*(N) ~ 
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N lnN /2 . It is interesting that this asymptotic limit is approached 
extremely slowly. Stern’s computer calculations show that all the way up to N = 500, the ratio 
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k*(N) / N lnN  is closer to 0.5 than it is to 0.7071…, its eventual limit. (For N = 500, the ratio is 
0.559…) 
 
Finally, as mentioned briefly above, there is a second version of Sun Bin’s Legacy, which is to 
find the strategy that guarantees the highest probability of winning a majority of tricks, 
regardless of the number of tricks won. Curiously, neither Stern nor I worked seriously on this 
question. In my case, this was because I expected the majority-of-tricks problem to be harder, 
because the objective function is nonlinear. 
 
Imagine my astonishment when, within one day of Gary Antonick’s post going up on the 
“Numberplay” blog, one of his readers found the optimal strategy for the majority-of-tricks 
problem! Here I assume N = 2n+1 is odd. Reader Bill Courtney showed that the optimal strategy 
is to throw n tricks. Thus player 2 pairs his top (n+1) cards against player 1’s bottom (n+1) cards, 
in order. It is easy to see that if there is any way at all to win (n+1) tricks, then this strategy will 
do so. The proof is left to the reader (or see Courtney’s comment to [A]). 
 
While Courtney’s strategy maximizes the probability of winning a simple majority, it is 
extravagantly wasteful on the level of tricks. It will on average lose nearly half the tricks. By 
contrast, the “Pascal’s triangle” strategy described above will on average lose only about 
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N lnN /2  tricks. By playing with a large enough deck, you can win as close as you want to 100 
percent of the tricks! 
 
The outline of the rest of the paper is as follows: 
 
I.  Basic Results, Mixed Monge Matrices and the Shape Theorem. 
 
This section sets up the problem as a linear assignment problem, shows that the objective 
function is given by a “mixed Monge matrix,” and derives a weak form of the optimal strategy. 



In particular, I show that the optimal strategy always involves throwing some tricks in reverse 
order, and playing the rest of the tricks in normal order. However, there may be “gaps” in the 
thrown tricks. Most of the work in this section is due to Stern (unpublished). 
 
II. The Symmetry Lemma. 
 
The objective function in section I leads to a mixed Monge matrix that is symmetric about the 
“anti-main diagonal,” and skew-symmetric (after subtracting a constant from each entry) about 
the main diagonal. I exploit this symmetry to prove that if you have decided which tricks to 
throw (say tricks 1, 3, and 7) then the optimal strategy for these tricks is to play your i-th worst 
card against your opponent’s i-th best card. Still, there may be gaps in the thrown tricks. 
 
III. The No-Gaps Theorem. 
 
In this section, which is the most technical one, I show that if N is large enough (at least 10 
million) then the optimal strategy has no gaps. That is, you should throw tricks 1, 2, …, k for 
some k. Although I do not derive the best strategy in this section, the proof depends on knowing 
that a very good strategy is to sacrifice the first 

€ 

N lnN /2  tricks. Roughly speaking, this 
strategy beats any strategy with gaps in it. 
 
IV. The Number of Tricks to Throw. 
 
In the last section, I explain the wonderful and totally unexpected connection between the 
expected number of tricks won and the 2N-th row of Pascal’s triangle. I derive the exact number 
of tricks to throw, k*(N), the approximate number k(N), and the asymptotic limit for both of 
them. 
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Addendum.  
 
A much improved version of the proof (valid for all N, not just for N > 107) was published in R. 
Chatwin and D. Mackenzie, “How to Win at (One-Round) War,” College Math. Jour. Vol. 46, 
No. 4, Sept. 2015, 242-253. 
 
The story behind this paper may be of interest to Gathering for Gardner readers. One of the 
people who attended my G4G11 talk was Brian Hopkins, the editor of the College Mathematics 
Journal (published by the Mathematical Association of America). He invited me to submit a 
paper on the Sun Bin problem to the College Mathematics Journal. 
 



In the meantime, I had started collaborating with Richard Chatwin, who had read about the Sun 
Bin problem in Gary Antonick’s New York Times article referenced above. Chatwin, unlike me, 
is an expert on linear assignment problems. (He wrote his Ph.D. dissertation on airline over-
booking, which involves this type of problem.) He asked the natural question, “What if we use 
the Hungarian algorithm?” 
 
In the end, it turned out that the Hungarian algorithm per se does not solve Sun Bin’s problem 
for all N, although it certainly can solve it for any individual value of N. The fundamental reason 
is that the algorithm repeatedly involves the step of finding the smallest element in a given row 
or column of a matrix and “pivoting” about that element. Identifying a particular element as the 
smallest amounts to proving a whole set of inequalities. The algorithm tells you what inequalities 
you need to prove, but not how to prove them! In fact, Chatwin found repeatedly that the 
inequalities he needed were precisely the ones already proved in my paper. 
 
Nevertheless, Chatwin did make major improvements to certain parts of my proof, especially to 
Part III described above. The final (and definitive) result reduced the “at least 10 million cards” 
requirement to a much more manageable “at least 41 cards.” That is, we can prove analytically 
that the Pascal’s triangle strategy is optimal, provided that N ≥ 41. For 3 ≤ N ≤ 40, the analytic 
estimates are too inexact and we have to resort to a case-by-case analysis on the computer. 
Chatwin did the computer calculations necessary to prove that the Pascal’s triangle strategy 
remains optimal. (Stern had already checked this for N ≤ 60, but it was nice to have an 
independent verification.) 
 
My original contribution to the G4G11 gift exchange was a 56-page paper with the proof that the 
Pascal’s triangle strategy is optimal for N > 107. Because we now have a much better proof of a 
more complete result, it no longer seems necessary to me to have the entire 56-page paper 
reproduced in this volume. However, it does appear in the online version for any readers who 
might be interested in seeing the not quite fully-baked version of the proof. 
 
I think that Martin Gardner would have approved of the way that a column written for the public 
(Gary Antonick’s blog) put two mathematicians together who never would have been able to find 
each other otherwise; and the way that a conference in his honor put us in contact with the editor 
who eventually published our manuscript. So my main gift to the G4G11 exchange is to tell you 
that Martin Gardner’s legacy (as well as Sun Bin’s legacy) is alive and well! 


