THREE PUZZLES
Alan H. Schoen
schoenah@gmail.com

1) Design a set S_1 of 24 dissimilar [non-convex] polyhedra with plane faces, such that
 (a) three concurrent edges of each polyhedron have integer lengths;
 (b) the volume of each polyhedron is proportional to the sum of the lengths of
 the three concurrent edges described in 1(a);
 (c) the set S_1 can be partitioned into six subsets, each of which packs a regular tetrahedron.

2) Design a set S_2 of 24 dissimilar [non-convex] polyhedra with plane faces, such that
 a) four concurrent edges of each polyhedron have integer lengths;
 b) the volume of each polyhedron is proportional to the sum of the lengths of
 the four concurrent edges described in 2(a);
 c) the set S_2 can be partitioned into four subsets, each of which packs a regular octahedron.

3) Design a set S_3 of 24 dissimilar [non-convex] polyhedra with plane faces, such that
 a) three concurrent edges of each polyhedron have integer lengths;
 b) the volume of each polyhedron is proportional to the sum of the lengths of
 the three concurrent edges described in 3(a);
 c) the set S_3 can be partitioned into three subsets, each of which packs a cube.

The solutions will be posted on May 1, 2014 at schoengeometry.com.