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In our class for humanities majors students complete an activity where
they construct a golden rectangle and then consider powers of the golden
ratio ϕ. The primary idea behind the activity is to provide a geometric foun-
dation for the idea of the golden ratio. As an extension, as the students are
computing powers of ϕ they see they can be written as linear combinations
of ϕ and 1 according to the following pattern

ϕ2 = ϕ + 1, ϕ3 = 2ϕ + 1, ϕ4 = 3ϕ + 2, ϕ5 = 5ϕ + 3, · · · (1)

and notice that the coefficients are Fibonacci numbers. This also reinforces
the connection between this famous sequence and this equally famous num-
ber. (Hooray for math!) An unexpected consequence for the authors was
that this activity led to an interesting question about sequences. In partic-
ular, one day after completing this activity in class we were discussing the
equations in (1) and wondered what real zeros these equations might have
besides the golden ratio.

The sequence of polynomials. Taking each equation in (1) and rewriting
as a monic polynomial gives us a sequence of polynomials of the form

fn(x) = xn − Fnx− Fn−1.

The process by which the students generate the equations in (1) uses the
fact that ϕ2 = ϕ + 1, so for n ≥ 2 each fn will have f2(x) = x2 − x− 1 as a
factor. This allows us to rewrite fn as shown below.

fn(x) = f2(x) ·
n−1∑
i=1

Fix
n−1−i

Because we will need it later, we will call the second factor gn−2. For example
f7(x) = f2(x)(x5 + x4 + 2x3 + 3x2 + 5x + 8) = f2(x) · g5(x). The general
form of gn is given by

gn(x) =
n+1∑
i=1

Fi x
n+1−i. (2)

Interestingly, each gn looks like a partial sum of the generating function
of the Fibonacci sequence, but in this case the coefficients increase while
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the exponents decrease rather than having the coefficients and exponents
increasing concomitantly.

Since the roots of f2 are ϕ and − 1
ϕ , we know that each fn will also have

these two numbers as roots. Hence our original question about roots can be
answered by looking for the roots of gn.

Finding roots of gn. Notice that the first and second derivatives of fn are
given by

f ′n(x) = nxn−1 − Fn and f ′′n(x) = n(n− 1)xn−2.

Then we can see that fn will have one critical value when n is even, and two
critical values when n is odd.

The Even Degree Case. In the case where the degree is even we see that
the one critical value corresponds to a relative minimum since the second
derivative is positive everywhere except x = 0. Hence f2n is convex and can
have at most two real roots. So the corresponding g2n−2 will have no real
roots.

The Odd Degree Case. In the case where n ≥ 3 is odd, the second derivative
test tells us that the critical values correspond to a relative minimum at
mn = (Fn/n)1/(n−1) and a relative maximum at Mn = − (Fn/n)1/(n−1).
Then, since f ′n(−1/ϕ) < 0 and fn(−ϕ) < 0, we know that fn has a single
real root in the interval

[
−ϕ,− 1

ϕ

]
. That is gn−2 has one real root. If we

define the sequence (zn) by letting zk be the real root of g2k−1 then this
sequence has an interesting limit.

The limit of (zn). To calculate the limit of (zn) we need three basic ideas.
The first two of these are well known.

Property 1. lim
n→∞

n1/(n−1) = 1 Property 2. ϕn−2 ≤ Fn ≤ ϕn−1

The third property was one which we knew, but could not find a reference
for, so we verify it here. Notice that if we take the (n−1)-st root of all three
sides of the identity in Property 2 we get the inequality

ϕ(n−2)/(n−1) ≤ (Fn)1/(n−1) ≤ ϕ(n−1)/(n−1).

Then if we take the limit as n→∞ on all three sides we get

ϕ = lim
n→∞

ϕ(n−2)/(n−1) ≤ lim
n→∞

(Fn)1/(n−1) ≤ lim
n→∞

ϕ = ϕ.

This gives us the third property.

Property 3. lim
n→∞

(Fn)1/(n−1) = ϕ
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Applying these three ideas to the consequences of the derivative tests from
before gives us the limit of (zn).

Proposition. For each n let zn be the real root of the polynomial g2n−1

defined in Equation 2. Then lim
n→∞

zn = −ϕ.

Proof. Let Mn be the value at which f2n+1 has a local maximum. That is

Mn = −
(

F2n+1

2n+1

)1/(2n)
. Then it follows that −ϕ ≤ zn ≤Mn.

By the properties above we have the following limit.

lim
n→∞

Mn = lim
n→∞

−
(

F2n+1

2n + 1

)1/(2n)

= − limn→∞(F2n+1)1/(2n)

limn→∞ (2n + 1)1/(2n)
= −ϕ

1
Hence −ϕ ≤ lim

n→∞
zn ≤ lim

n→∞
Mn = −ϕ. That is lim

n→∞
zn = −ϕ.

�

Laurent polynomials. If we divide both sides of the equation ϕ2 = ϕ + 1
by ϕ2 then we get 1 = ϕ−1+ϕ−2. Then we can use this fact to write negative
integer powers of ϕ as a linear combination of ϕ−1 and 1 in an analogous
manner to the way we did in (1) as follows:

ϕ−2 = −ϕ−1 + 1, ϕ−3 = 2ϕ−1 − 1, ϕ−4 = −3ϕ−1 + 2, ϕ−5 = 5ϕ−1 − 3, . . .

Using the same ideas as before, we can write a sequence of Laurent poly-
nomials of the form

`n(x) = x−n + (−1)nFnx−1 + (−1)n+1Fn−1.

Each of these will have `2(x) = x−2 + x−1 − 1 as a factor and so we can
express them as

`n(x) = `2(x) ·
n−2∑
i=0

(−1)iFi+1 xi+2−n.

We call the second factor hn−2 whose general form looks like

hn(x) =
n∑

i=0

(−1)iFi+1 xi−n.

Then we can connect the Laurent polynomials to the polynomials from be-
fore using a function transformation. Notice that we can realize hn from gn

as follows.

(−1)ngn

(
−1

x

)
= (−1)n

n+1∑
i=1

Fi

(
−1

x

)n+1−i

=
n∑

i=0

(−1)iFi+1 xi−n = hn(x)

So the roots of hn will correspond to the roots of gn using the same trans-
formation. Hence hn will have no roots when n is even. When n is odd, the
real root yn of hn will correspond to zn according to yn = −1/zn. Note that
the factor of (−1)n is not necessary since the function values are zero. Thus
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we can see that the sequence (yn) of real roots of the odd degree Laurent
polynomials h2n+1 converges to ϕ− 1 as follows.

lim
n→∞

yn = lim
n→∞

(
− 1

zn

)
=

−1
limn→∞ zn

=
−1
−ϕ

= ϕ− 1.

Summary. We define a sequence of polynomials and a sequence of Laurent
polynomials by considering powers of the golden ratio ϕ. A subsequence of
each polynomial sequence corresponds to a sequence of real numbers. The
numerical sequences have interesting limits.
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