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At the turn of the 20t century, Max Planck uncovered a new physical
constant that bears his name and turned Classical Physics upside down. Instead of
allowing all possible energy states to be accessed, Max Planck did the unthinkable of
transforming an integral over all energy states times the probability of occupation of
the energy states of matter into a Geometric Sum of discrete energy states. In the
well known experimental but theoretically unexplained results of the Blackbody
radiation curve, Planck introduced one constant to the experimental curve of the
emitted light intensity versus the frequency of light. Five years later, Albert Einstein
was able to explain the Photoelectric Effect by transforming the wave nature of light
into a particle description of light. The essence of the Photoelectric Effect is
measuring the electrical current of a metal as a function of frequency of the light
incident on its surface. The experimental results are linear with a slope of Planck’s
constant.

The simultaneously discovered quantum theories of Werner Heisenberg and
Erwin Schrodinger evolved to explain interactions of light with matter, thus
theoretically explaining the line spectra of atoms and molecules. The double slit
experiment demonstrates the dual wave/particle nature of light (photons). Itis the
results of this experiment that defines a Jin and Jang of the Quantum Physics Truth
Table.

The results of the experiment are based on a comparison of the Classical
Physics results of particle and wave behaviors passing through a single and double
slit. If you shoot small paint balls through a fence that has open slots in front of a
screen, you will find individual marks on the screen. Those marks would
correspond to well defined trajectories (paths) that would lead back to the paint ball
gun’s angle with respect to the fence and the amount of force with which the paint
ball was released from the gun. If you shoot through two slits in the fence you will
find two single fence slot patterns of individual paint balls. If you pass a beam of
light waves through a single slit, you will observe a diffuse band of light right in the
region of the screen where you expect to see the paint balls land. If you pass a
monochromatic beam of light through a double slit of the proper geometric
proportions, you will find an interference pattern, which is comprised of multiple
bands of light with the most intense band lining up with the region halfway between
the two slits. Clearly there is a distinction between wave behavior and particle
behavior. The particle behavior is described by a trajectory leaving distinct marks
on a screen. This gives information about the path between the source of the



particle and the point of impact of the particle. Waves, on the other hand, have no
defined trajectory and different parts of the wave “interfere” with one another.
When the crest (or trough) of one wave reinforces and amplifies the crest (or
trough) of another wave, the result is constructive interference. Destructive
interference is produced when the crest of one wave meets the trough of another
wave, causing them to cancel each other out and leave a node or place with no
intensity.

With this introduction, particle and wave behavior are clearly distinguished
from one another in Classical Mechanics. Based on Einstein’s explanation of the
photoelectric effect, experiments have been created in which the single and double
slit experiments can be carried out using photons as our light particles. As
anticipated, when individual photons pass through a single slit, the screen on the
other side shows a single band of individual photons. However, when the both slits
are opened, the interference pattern emerges from the pattern of dots showing up
on the screen. The eminent physicist, Paul Dirac explained this by stating that the
photon interferes with itself as it passes through both slits. The wave/particle
duality of quantum-sized entities does not admit of a trajectory when a wave
experiment is performed.

First, when setting up truth tables, one can choose to assume that a three
valued logic is appropriate in which the Law of the Excluded Middle is set aside.
One can create a true, false and maybe table or a true, false, undetermined and
indeterminate, thus creating a three or four valued logic table, respectively. Careful
examination of these alternatives reveals an imposition of a trajectory on the
quantum-sized objects under study. To avoid this inherent implicit assumption, the
use of the Heisenberg representation of the state of a system is undertaken. The
state of the system is represented as a vector. Since one of the quantum postulates
set forth by von Neumann states that the probability of state of the system is the
square of the state vector, one can represent the state of an arbitrary vector, g> in

terms of the complete set of vectors describing the pure states of the system. In the
case of the truth table, the complete set of vectors is either true or false. Either the
particles or photons hit a particular region of the screen or they do not hit other
portions of the screen, irrespective of whether there is a trajectory or not.

The classic truth table can be constructed in the following way:

P |q pAq | pvq | p—q | p<q
T| T T T T T
T | F F T F T
F| T F T T F
F| F F F T T

The pAaq column has only one T value and the rest are F. The pvq column reveals
that there is only one F value and the rest are T. If the particular trajectory from the



p (source) to the q (screen) is ignored, pAq is only T when both p and q are both T.
Likewise pvq is only F when both p and q are F. These are the only necessary rows
of the classic truth table. The other two columns of the truth table are only F when
p—q has p = F and p<—q has q = F. Once again only two rows of the truth table are
needed to describe the probability of the truth of the outcome. Those two rows are
two different rows than the A and v rows. Further more, the p—q column can be
replaced by its equivalent of p or not q and p<—q can be replaced by not p or q. The
following postulates are set forth. Another quantum physics postulate is that the
expectation value of a particular operation is equal to the following: <f|é|g> =

scalar value dependent on the particular operator “O”. The notation | g> is called a

ket vector representing the state g and because the vectors are in general
representative of complex functions. The other notation of <g| (the bra vector) is

the complex conjugate of the ket vector. The particular representation that is
adopted here is the following. In the case of the double slit experiment, the
representation of the state in which the particle passes through the right slit will be:

|R)= i) and (R|=[10]. A particle passing through the left slit will be: |L)= ? and

<L| = [0 1] . Note the following properties of these two representations of classical

particles:

(R:|R.)=(L.|L.)=1and (R.|L.)=(L;|R.)=0
where the subscript C is added to make a distinction between Classical Physics and
Quantum Physics. This follows another postulate of von Neumann for quantum
physics and that is that the square of the state vector equals the probability of
finding a particle in a particular state. The probability of a particle aimed at the
right slit and showing up at the right region of the screen is certain, but the
probability of a particle aimed at the left slit and showing up at the right region of
the screen is zero.

To complete the description the quantum mechanical state, one has to evoke
the notion that solutions are most readily described as vectors in the complex plane.
The pure states that are orthogonal to the real axis are:

in/2 0
‘RQ> - ‘ e—m/z }

Note, once again, that The subscript Q refers to a quantum state, but as is readily
noted the designation of right and left are completely arbitrary. As in the classical
physics representation the following results are:

(Ry|Ry)=(Ly|Ly)=1 and (Ry|L,)=(L,|R,)=0.
Based on the experimental results of the double slit experiment, the trajectory is
undefined for photons and photons can only be represented as linear combinations

and ‘LQ>=




of their pure states, referred to as mixed states. The mixed quantum states in this
representation would be:

i 1 [em i 1 [e
‘RQ > - ﬁ[:—mn] and ‘LQ> - ﬁ[ie—m/z} '

As before, these mixed states are orthogonal to one another, but a factor of the
square root of 2 is needed to keep the square of the vector equal to unity.

Having the states of the system defined, the definition of the operators of A,
v, — and < need to be defined. Once again, a quantum projection operator
technique is going to be used that is based on the classical state vectors. Since the
experiment uses a classical sized experimental apparatus (i.e., the double slit), the
projection operators for each of the four symbols of A, v, = and <— will be based on
the classical physics pure left and right slit vectors. The projection operators for
each of the operators are defined as:

Po(N) = |RY(Re |+ Le )(Le | = (1) ?]

-t lolot] ) 0 Jo[ 2]
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The plus sign in the A operator means the arithmetic plus. The plus within a circle is

a designation like the plus sign linking the real and imaginary parts of a complex

-1
0 ]
produces the matrices with negative ones on the diagonal element. The (-) to the
left or the right of the projection operators means to change the phase of the vector

that is multiplying either from the left or right of the operator. In terms of the

classical mechanics particles this has no effect on the outcome of the experimental
results, but in the case of the mixed quantum states representing the wave/particle

number. The classic projection operator created by the <EC ‘ =[-10] or ‘§C> =

duality of particles there is an effect when using the classical mechanics projection
operator.

The final step in the construction of our truth table for classical and quantum
particles is to apply the four operators to combinations of the two pure classical
particle states and to the two mixed quantum particle states. The first test is to see
if the projection operator for a single slit (either the right or left slit only) would give



the experimental results for the small paint ball and photon passing through a single
slit. In this case, the projection operators are:

A 1 0 A 00
P, = and P, =
R[OO] L

1
The results of the experiments based on the expectation values produced by these
operators follows:
<Rc |PR |RC> - <LC|PL |LC> =15 <RC |PR |LC> = <Rc |PL|LC> = <Rc |PL|RC> = <LC |PR |LC> =0
Also:
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Ry)=(L, Ly)=(Ry|B,| L) =15 (Ry|B,|Ry )= (Ly|B| Lt )=0
The last result may seem surprising, because of the labeling of L and R on the
projection operator and the state vectors not matching. As noted earlier, the
labeling of the quantum state vector is arbitrary and irrespective of the labeling the
projection operator, the expectation value for the probability of the Lq mixed state
going through the projection operator for the right slit is the same as the probability
of the Rq mixed state going through the projection operator for the left slit.
Otherwise, the passage of a Rq mixed state and a Lo mixed state through the same L
or R projection operator causes a destructive interference of the two out of phase
states. These results are in complete agreement with the experimental results.
Applying the right and left projection operators for the double slit
experiment to the classical mechanical particles, yield the following results:

(Re|B.(N|R:) =15 (L] B.(W|L:) =15 (R |B.(W| L) = (L |B(W)|R.) =0
(R|B.(W|R)=1®0;5 (L|B.(V|L)=0®1; (R.|B.(V)|L.)={L.|B.(V)|R.)=0®0
(R|B(=)|R.)=1®0; (L. |B(=)|L.)=0@1; (R |P(=)|L.)=(L.|P.(—=)|R.)=0®0
(Re|B-()|R:)=1®0; (L |P()| L) =0@ 15 (R |P()| Lo ) = (L |P-(<)| R )= 0DO
The interpretation of these equations is that if the probability of the classical
particle is certain to go through the right side of the double slit, then it will end up
on the right side of the screen. But, if one shoots our tiny paint ball toward the left
slit, then it will go only show up on the left side of the screen.

Applying the classical mechanics projection operators for the double slit

experiment to the quantum mechanical wave/particle properties of photons, yield
the following results.

(Ry| B[Ry ) = 135(Ly | B0 L ) = 15(Ry | Bo(w)| Ly ) = (L | P ()| R ) = 0

Ry |P.()|Ry ) =1@05( Ly |B(v)| L) = 0@ 1 <RQ’"|}A’C(V)|L’3>=<L’5|ﬁc(v)|Rg>=%@%
(IR R, RPN
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{
(Ry | ()| Ry ) = 1@ 05( Ly | P ()| L ) = 0 @ 13( Ry | B (—)| Ly ) =
<Rg|13c(<—)|Ré”>=1®0;<L’5|13C(<—)|L’5>=O®1;<R’Q"|I3C(<—)|L’g>=_%@%;<Lrg|ﬁc(<_)|Rg>=
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In some respects, the results look similar to the classical mechanics particle vector
results. However, the quantum mixed vectors carry both of the pure imaginary
states. The results of the <X§1 ‘ﬁC(A)‘YQ’"> =1 when Xy = Ypand <X§1 ‘ﬁC(A)‘YQ’"> =0

when X # Y does not have the same interpretation as the classical double slit
results. In the classical regime, the right and left vectors are pure states; whereas, in
the quantum regime, the right and left vectors are not pure quantum states, but
mixed states, which makes the labels of Rj and L; meaningless in terms of trying to

put a Newtonian label on the quantum particles that have no trajectories. Viewing
the totality of both the classical particle and the quantum particle, gives a quite
different interpretation of the quantum regime. The <X§1 ‘f’c (A)‘YQ’" > =1when Xp =Yy

is interpreted as a linear superposition principle of both pure states that
constructively interfere with one another. The <X§1 ‘f’c (A)‘YQ’" > =0 when Xy # Yy

means that the interference of these two different, orthogonal, linear superpositions
destructively interfere with one another, thus, setting up an interference pattern.

The same argument applies to the other three projection operators for the
case where Xp = Yp. Moving on to the cases where Xy # Yy, the ﬁc (v) projection

operator shows that going through the double slit with two orthogonal mixed states,
is equally probable for these two different, orthogonal, mixed states to
constructively interfere with one another. This is another way of expressing
constructive interference of the two pure states as they pass through the double slit.
Now for the ﬁc (—)and ﬁc (<) projection operators. Their results not only show the

equal probability but the relative phases of the two pure states.
Classical Mechanical Truth Table

A

(p a) ISC(’\) Fe(v) ISC(_>) ﬁC(e)

(R:| |R:) 1 1®0 10 1®0
(R.| |Lc) 0 0®0 080 0®0
(Le| |Re) 0 080 0®0 0®0
(Le| |Lc) 1 0@l 0@l ool
Quantum Mechanical Truth Table
ol o) B PV P) B«
(Ry| |R) 1 1®0 1®0 10
<R’" |L'Z)> 0 l@l l@_l _l@l
272 27 2 22
wl | 11 1.1 11
k)0 595 595 39
(Ly| |Ls) 1 0®l 0®1 0@l



