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The Animal Hunter through My Life 
Tom Smith 

Fair Haven Union High School 
 
Everyone needs to start puzzle solving, or magic, somewhere, and so several of us 

started with “The Animal Hunter”.  When we started, we had no idea it might be called a mental 
magic forcing device, that would come later.  Nor did we probably think to work beyond the 
basic prop that we received.  It was just a trick to fool our friends and family, but it is pretty 
clever! 

My first experience with the prop came when I was seven or eight.  I received an S. S. 
Adams magic set complete with three colored Cups and Balls, Magic Coin Box, Balancing 
Wand,  Rice Bowls, Ball and Vase, and more.  Several of them I could do, such as Ball and 
Vase, Balancing Wand, etc., but several ended up in the bottom of the toy box, including The 
Animal Hunter. 

The Animal Hunter was a simple cream colored plastic disc about four inches in 
diameter.  It had raised surfaces detailing seven animals and their names around the edge of 
the disc.  These were printed in red.  Below the picture of each animal, a hole was stamped 
through the disc.  By today’s terms, it was a simple, durable, and somewhat attractive piece of 
magic.  Unfortunately, with the direction booklet “gone with the wind”, that’s about all there was 
to it. 

Time passed, as it always does, and the pieces of the magic set that could be found 
were retrieved from the abandoned toy box when a real interest in magic was renewed in ninth 
grade.  With The Amateur Magician’s Handbook by Henry Hay in hand, many of the little tricks 
could be put to use.  The Cups and Balls had new life, as did the black egg shaped Vanisher 
and The Rice Bowls.  The Magic Coin Box could be enhanced by putting it into a ball of yarn, 
and The Three Shells could be used for the routine that was outlined in either MUM or Linking 
Ring.  For someone on a very limited budget, the set turned into a gold mine, but that disc with 
the animals was still a mystery. 

Moving ahead about ten years and I am teaching sixth graders about science, and in a 
unit on scientific method, we investigate ESP.  To give students practice in following directions 
while exploring the topic, the VHS tape “Max Maven’s Mind Games” was put to good use. 
Students would follow Max’s instructions and be amazed at the outcome.  One of the tests he 
presented dealt with astrology and involved a circle of symbols with a tail of four symbols 
outside the circle.  Students would pick a number and begin counting that number starting on 
the first symbol of the tail, and then entering the circle on the count of five, and then continue 
their count, symbol by symbol until their secret number was reached.  They then counted the 
symbols backward to the same number but avoiding the tail.  Max then revealed the symbol on 
which they had landed.  Once again, amazement, and then Max was off onto the next 
experiment.  Little did I know, the methodology of The Animal Hunter had an inkling of a 
relationship with Max’s Astrology Experiment. 

 Last year at Magic Live 2017, I attended a session group about using magic as a tool to 
help children.  Lo and behold, there it was… The Animal Hunter!  Through the proceedings, we 
were shown the trick.  Someone picked one of the animals and told no one.  The performer 
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tapped the various animals with a pencil while the participant silently spelled the animal’s name. 
When the participant finished spelling, she said, “Stop!”.  The performer’s pencil rested on the 
animal that was chosen.  I had finally seen it!  Continuing on, another person selected an animal 
and the routine was repeated, except different animals were tapped.  Still, the performer ended 
tapping on the selected animal.  Intriguing, indeed, to those of us not familiar with the workings 
of the chestnut. 

We were then given a paper copy of the animal disc, which, in performance, wouldn’t 
occur.  Just as in the Astrology Experiment, show it and move on.  Upon careful examination, 
the working became evident, especially with Max’s Astrology Experiment, and it’s tail.  This was 
no random grouping of animals!  They were carefully chosen!  Now, the effect of the little plastic 
disc was clear, and it was clever! 

While most folks stop with the animal disc, I wondered if the effect could be used in other 
ways.  For one, since I teach chemistry, I could show students a wheel with the following 
elements:  potassium, tin, tungsten, xenon, phosphorus, gold, helium, and mercury and the 
same effect, with a chosen element, would work beautifully.  The effect could be repeated a few 
times and then the students could work in groups to try to discover the secret.  Now they have 
something which they could show their parents and friends.  This may seem like a tenuous 
connection to chemistry, but I believe that chemistry is all about patterns and problem solving, 
and that is what this problem would be. 

How could you use “The Animal Hunter” in your field?  



PUZZLES |  22

PUZZLES
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Shape Shikaku
By Walker Anderson 

Shikaku is a pencil-and-paper logic puzzle published by Nikoli. 
The goal of the puzzle is to partition the grid into rectangles 
along the grid lines. Each rectangle contains exactly one clue 
number which gives its area. The solution is unique. (rules from 
mellowmelon.wordpress.com) 

Shape Shikaku adds a change to these rules. Some of the squares 
in the grid will not be occupied by rectangles containing clue 
numbers. These squares must be copies of a shape that is 
provided to the right of the grid. The shape can be rotated and/
or reflected, but it cannot overlap other shapes or rectangles in 
the grid. The number of shapes placed in the grid is given. 

Here is an example puzzle, and its solution: 
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Long Division

G for Gardner
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Zoom Lens

Hardwood Floor



PUZZLES |  26

Development of the Loyd Polyominoes Puzzle 
Donald Bell – 

Summary 
There are 5 tetrominoes and 12 pentominoes—17 polyomino shapes in total.  The challenge is to 

find a group of only eight puzzle pieces that can make each of these 17 shapes.  This design task is 

actually much more difficult than the Loyd Polyominoes Puzzle itself.  There is a companion web 

site with downloadable files and other material at:   

 
Background  

About 100 years ago, Sam Loyd showed how to 

dissect a Greek Cross to a square in only four 

pieces.  Note the small green triangle. 

  
This is the starting point for quite a complex project, so it is necessary to give precise definitions to 

all the words being used, particularly those referring to assemblies of things.  At one point we will 

have to consider collections of collections of collections. To be precise, seventeen "sets" of 

"groups" of "pieces".  Each technical term will be highlighted in CAPITALS AND BOLD on first use.  

The word SET will be used in its mathematical sense of a collection of objects, no two of which are 

identical.  But other technical words will just be defined as they are used.  As Humpty Dumpty said 

in Alice in Wonderland, "When I use a word, it means just what I choose it to mean." 

 

If the short side of the small green triangle is one unit, then its sides 

BUILDING BLOCKS.  The other one 

is the unit square.  Both of them have an area of 1 unit.  
 

So, if the Greek Cross is 6 units wide and 6 units high as shown, then 

its total area is 20 units.  This means that each side of the big square 

 

  

For this project, a puzzle PIECE is made from one or more building blocks.  There are well over 30 

plausible shapes for puzzle pieces made in this way.  The useful pieces have an area of 1 to 4 units. 

Several puzzle pieces can be put together to make a target SHAPE, like Loyd's Greek Cross or 

Square.  The collection of pieces will be called a GROUP.  The purpose of this project will be to 

identify a group of pieces that can make many target shapes.  So, in the case of the Loyd Greek 

Cross and Square, the group of four pieces can make both of the two target shapes. 

 
The Greek Cross is one of the PENTOMINOES, shapes made 

using five squares.  There are 12 of them, usually known as I, 

for the R  pentomino.  The square 

is one of the TETROMINOES and there are 5 of them—square, 

I, L, skew and T.  They are shown sloping to the right to match 

the Loyd dissection above.  The skew may be "S"-shaped or 

"Z"-shaped.  
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That makes a total of 17 target shapes, to be known as the POLYOMINOES, sometimes spelled 

"polyominos".  The task is to find a group of the smallest number of puzzle pieces that can make 

each of these 17 shapes. 

 

First Attempts 
A group of 16 triangles and 4 squares can make all of the 

pentominoes and tetrominoes.  For the tetrominoes, there are 10 

triangles around the perimeter and the other pieces fill the interior.  

But 20 pieces is a big number.  Can it be reduced?  

By combining some building blocks in pairs, this number 20 can be 

reduced to about 13, as shown for the T and S tetrominoes.  But it is 

difficult to get any lower using this method. 

 
A research group at the Politecnico di Torino published this group 

of pieces that can make all 17 polyominoes.  Web reference: 

It has only nine pieces, five of them being the basic triangles. 

 
Analysis of the Problem 
It is not easy to identify the most appropriate 

puzzle piece shapes to try.  The unit square and 

small triangle can be glued together in many ways 

to make plausible puzzle pieces, ranging in area 

from one unit to six.  Then each group of pieces 

that look promising must be tested against all 17 

of the target shapes.  A very tedious process! 

No puzzle piece can be larger than 6 units.  In the 

left diagram a white I pentomino is laid over a grey 

W pentomino.  The pink rectangular area common 

to both has an area of 8 units.  But when this is 

overlaid by an I tetromino, the pink area is 

reduced in one of the three ways as shown.  

 

There are about 30 ways of combining small triangles and squares to make plausible puzzle 

pieces.  These can be assembled into hundreds of groups and each group has to be tested to see if 

it can make all 17 of the target polyomino shapes.  Obviously a computer is needed to do some of 

the computational “heavy lifting”, and a program such as "Burr Tools" is called for.  But, even then, 

a lot of human intervention is required, together with a rather sophisticated search procedure. 

 

Using Burr Tools to Solve Puzzles 
To illustrate how this can be done, we will set up an example problem and use Burr Tools to help 

in the search for a solution.  This worked example is probably simple enough to be solved without 

a computer, but the real application, involving all the polyominoes, needs both Burr Tools and 
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some new supporting computer programs, both for data preparation and for analysis.  These will 

not be described in detail, but their main features should be fairly easy to follow. 

 

In this example there are three target shapes: "block", 

"gamma" and "cross".  All have the same area, 21 units. 

And there is a collection of pieces that is more than enough 

to cover that area.  The pieces are called V, I, L, T, W, Y and 

R.  They have a combined area of 29 units.  So, any solution 

will use some of the puzzle pieces, but not all of them.  

 
 

 

Here are some of the solutions for the "cross" 

target shape.  The group of pieces for the first 

and third one is VLTRW, and the groups for the 

others are shown.  But although there are many 

solutions, there are only three different groups. 

The shape “block” has several possible groups of pieces: 

VLTRY, VLTRW, ILTRY. 

And for “gamma”, the groups are: 

VLTRW, ILTRY, VLTWY. 

The task is to identify a single group of pieces that can 

make ALL THREE of the target shapes.  The results can be 

drawn on a Venn diagram.  Each of the circles is the set of 

groups of pieces that can make one particular shape. 

So the common group is VLTRW, shown in the centre: 
 

And here it can be seen that, indeed, the group of 

pieces VLTRW can make each of the three target 

shapes. 

Adapting Burr Tools for the  
Burr Tools usually deals with squares or equilateral triangles.  So a 

modification is needed for se diagrams 

show how this was done.  Everything was quadrupled in size and 

the unit square and triangle were represented like this: 
 

It is a laborious and error-prone task to get the coding of 

all the puzzle pieces and polyomino shapes exactly right. 

So a small shape definition program, written in Python, 

was used to help prepare the puzzle data.  These diagrams 

show the T pentomino and the T tetromino.  
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The xmpuzzle file format 
Burr Tools uses an XML format to describe the composition of puzzle pieces and target shapes.  

Everything is embedded in a file with an  extension.  Usually this file is "zipped" before 

being written to disc.  The  file also shows the details of the puzzle and, if some 

solutions have been found, these are embedded in the file as well before it is saved back to disc. 

 

So it is possible to unzip these files, make some changes manually, and present them again to Burr 

Tools for further computation. 

 

The structure of an file is a bit complicated, but here is a condensed version of the file 

for the "block gamma cross" example puzzle above.  Some of the XML has been removed for 

brevity, as well as parts of those sections which have a lot of repetition. 

 

The main sections are these: 

 A definition of all the shapes, both target shapes and puzzle pieces (in yellow). 

 Indication of which shape is the target. 

 Choice of the pieces to be used and how many of each (in blue). This might be a fixed 

number or a range of numbers. 

 If the program has been run, the solutions are written back into the file (in pink). 

 

 

 

Without going into all the details, it can be seen that the sections (in yellow) are 

describing the shapes of the three target shapes and the seven puzzle pieces.  The symbols  

and  (sharp and underscore) represent filled and empty cells in a matrix. 
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The  section (in pink) describes the solutions that have been found.  The numbers 

come in sets of four (with a simple  if a piece is not being used).  So it is a straightforward 

programming task to do some string processing and identify the group of pieces that has been 

used for any one solution.  For our purposes the group is more relevant than the full solution. 

 

Putting it all together 
Having described the various logical components of the investigation, let's have a look at all the 

procedures involved.  Two sorts of experiments were done: 

 A search for a group of pieces, with no duplicates, which can make each of the 17 

polyominoes. 

 A search for the smallest number of pieces, this time allowing any number of duplicates. 

 

Suppose we have a BOX of pieces, possibly containing some duplicates, and we present it to Burr 

Tools together with just one of the 17 polyomino shapes.  We will then get a COLLECTION of 

SOLUTIONS for that particular shape.  This process is then repeated 16 more times to cover all the 

target shapes. 

 

The choice of the pieces in the box is a matter for the human investigator.  If there are too few 

pieces, or if they are badly chosen, there may not be enough variety for a complete solution to 

emerge.  But, if there are too many pieces, the computing complexity may be too great. 

 

Within the collection of solutions for one target shape, there may be a group of pieces that is used 

for more than one solution.  We are more interested in the groups than in the solutions.  So the 

collection of groups needs to be reduced to a SET with no repetitions.  The word set is being used 

in its mathematical sense of a collection of objects, no two of which are identical.  Each object in 

the set is a group of puzzle pieces, usually between 8 and 11 pieces in any one group. 

 

In this way, we will get 17 sets of groups of pieces and we need to find a group that is present in all 

17 sets.  So we make an “intersection” of the 17 sets, looking for the one element that is present in 

all of them. This way we hope to get a group of pieces that can be used to make all 17 polyominoes. 

 

There may be several such groups, or there may be none at all.  This would mean that, for that 

particular selection of pieces in the box, there is no group that can make all of the 17 target shapes.  

So it may be necessary to adjust the box of plausible pieces and try again.  That might mean 

doubling up on a few pieces, including or inventing new ones and leaving out others. 

 

Mirror Image Target Shapes 
And now for a small complication.  The puzzle pieces that we are working with are all 

non-symmetrical, except for the unit square.  But the only angles in the polyomino target shapes 

are right angles. 

 

So it is not possible to turn over just one puzzle piece and leave the others as they were.  

Therefore, unlike most put-together puzzles, it is NOT permitted to turn over any piece, unless all 

of them are turned over. 
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This means that if there is a solution to one target shape, the P pentomino 

for example, there will be quite a different solution for its mirror image, 

as seen in this nine-piece assembly.  

Or there could be a polyomino which has a perfectly valid solution, but its 

mirror image has no solution at all. 

So, although there are just 12 pentominoes and 5 tetrominoes, there are actually 8 more shapes to 

be considered if the mirror images of the non-symmetric polyominoes are included.  This means 

that we can, for example, include the "skew tetromino" shape if there is a solution for its "Z" 

configuration, even though there is no solution for its "S" configuration. 

 

A Nine-Piece Group with no Duplicate Pieces 
Here is a group of 9 pieces that are all different.  It 

can make all the 17 polyominoes. 

 

Using this nine-piece group, 

there are several solutions for 

all the polyominoes and some, 

but not all, of their mirror 

images. 

This diagram gives an indication 

of the complexity of the 

solutions in this project. 

The skew tetromino has been 

drawn in its "Z" configuration.  

That is because there is not a 

solution in its "S" configuration. 

There are also no solutions for 

the mirror image shapes of the L 

tetromino and the R, S, and Z 

pentominoes. 
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Eight-Piece Groups 
So far, three groups of eight 

pieces have been found, one of 

which is shown here. 

Some solutions using this group 

are shown at far right. 
 

 
 

This was my Exchange Gift at the Gathering for Gardner in Atlanta in 2018.  It has quite a small 

number of solutions for all of the tetrominoes and pentominoes and nearly all of the mirror image 

shapes, too.  So it is a challenging collection of puzzles.  It can't make the "Z" configuration of the 

skew tetromino, so the total number of puzzles is 24, not 25. 

 

And here are two more groups of eight pieces which can make the 17 polyominoes.  In each case 

the top row of five pieces is the same as in the group above. 

 

  
 
Conclusions and Opportunities for Further Work 
The procedure to find these groups of pieces was far from straightforward.  The number of 

intermediate solutions found by Burr Tools was huge, and the computer frequently ran out of 

storage and just stopped. 

Sometimes a consideration of the target shapes demonstrated that a particular 

puzzle piece could be used once but not twice.  The long edge of the big triangle 

can't, for example, fit twice into the perimeter of the T tetromino. 

 
So it has not been possible to do an exhaustive search for the very best groups of pieces that can 

make all 17 polyominoes.  But the difficulty of finding a group of just eight pieces suggests strongly 

that no seven-piece group exists. 

 

The solution in nine pieces may not be the only one, and it is possible that there is an eight-piece 

group with all the pieces different, which is still waiting to be found.  Bigger computer needed! 

 

Please email me with comments, discoveries and suggestions. 
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One Puzzle
Colin Beveridge
March 10, 2018

1. The Broken Calculator

A calculator is missing all of its keys but sin, cos, tan, SHIFT1 and 1 That is to say: the inverse trigono-
metric functions are also available.=. It initially starts with 0 on screen. Show that the calculator can

produce any positive rational number.

Some functions

By applying one of the three inverse functions to a number (assuming
it is in the relevant domain) and one of the direct functions to the
result, we end up with a (generally different) number. It’s worth
exploring some of the things we can do with such compositions.

A useful composition would be one that took a number greater than
one and returned its inverse, so that the output is in the domain of all
three inverse functions.

This can be arranged by considering a right-angled triangle as
pictured, with q > p. arctan

(
q
p

)
gives angle Q. The cosine of Q is

p√
p2+q2 , and the arcsine of this is angle P. Finally, tan (P ) = p

q , the
reciprocal of the original argument.

Figure 1: A triangle
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Definition: Let R(x) = tan (arcsin (cos (arctan (x)))) = 1
x .

Given a number smaller than one, where do the various composi-
tions leave us? Ignoring the self-inverse compositions, and assuming
p < q, we have:

• sin
(

arccos
(

p
q

))
=

√
q2−p2

q

• cos
(

arcsin
(

p
q

))
=

√
q2−p2

q

• tan
(

arccos
(

p
q

))
=

√
q2−p2

p

• cos
(

arctan
(

p
q

))
= q√

p2+q2

• tan
(

arcsin
(

p
q

))
= p√

q2−p2

• sin
(

arctan
(

p
q

))
= p√

p2+q2

I’ve arranged these in three pairs, such that each element of a pair
is the other’s inverse over a domain of at least 0 ≤ p

q ≤ 1.

The first pair of functions aren’t especially interesting, but either
of the last two pairs can be used to great effect. I’ll pick the last pair,
and give them names.

Definition: Let Ts(x) = tan (arcsin (x)).

Definition: Let St(x) = sin (arctan (x)).

With these two functions, and R(x) from before, we can solve the
puzzle.

A solution

Proposition: Any positive rational number can be produced by
applying a composition of the functions sin, cos, tan and their usual
restricted inverses to 0.

Remark: cos(0) = 1, so 1 can be produced.

Demonstration: Suppose we wish to produce a rational number,
r = p

q , with p and q coprime positive integers.

If p > q, then r can be produced if q
p can; therefore, we need only

show that all positive rational numbers smaller than 1 can be reached.

Assuming r < 1, it can be reached (by way of St) if Ts(r) =
p√

q2−p2
can.
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This is not (generally) a rational number, but it is the square root
of a rational number. Its numerator is smaller than q, by supposition;
its denominator is also smaller than q because of geometry and/or
algebra2. 2 You can see this by considering a

right-angled triangle with hypotenuse
q and a leg of p. The second leg is√

q2 − p2, which is smaller than q.
Remark: The key point here is that Ts

(
p
q

)
is a fraction with a

numerator and denominator both of which are square roots of integers,
and both strictly smaller than q.

Applying R if needed, this means p
q can be generated from some

number of the form
√

a√
b

with 1 ≤ a ≤ b < q, with a, b and q all
integers3. 3 Regarding a ≤ b: equality holds here

iff q = 1√
2 .

Repeating the process leads to still smaller elements of the fraction;
a decreasing sequence of integers bounded inclusively from below by 1
must eventually reach 1.

Since we know we can produce 1, all positive rational numbers can
be produced �.

An example

Suppose we want to produce r = 4
3 , everyone’s favourite triangle-

related fraction.

• 4
3 can be produced if 3

4 can; r = R
(3

4
)
.

• 3
4 can be produced if 3√

7
can: r = R

(
St

(
3√
7

))
.

• 3√
7

can be produced if
√

7
3 can: r = R

(
St

(
R

(√
7

3

)))
.

•
√

7
3 can be produced if

√
7√
2

can: r = R
(

St

(
R

(
St

(√
7√
2

))))
.

•
√

7√
2

can be produced if
√

2√
7

can: r = R
(

St

(
R

(
St

(
R

(√
2√
7

)))))
.

•
√

2√
7

can be produced if
√

2√
5

can: r = R
(

St

(
R

(
St

(
R

(
St

(√
2√
5

))))))
.

•
√

2√
5

can be produced if
√

2√
3

can: r = R
(

St

(
R

(
St

(
R

(
St

(
St

(√
2√
3

)))))))
.

•
√

2√
3

can be produced if
√

2
1 can: r = R

(
St

(
R

(
St

(
R

(
St

(
St

(
St

(√
2

1

))))))))
.

•
√

2
1 can be produced if 1√

2
can: r = R

(
St

(
R

(
St

(
R

(
St

(
St

(
St

(
R

(
1√
2

)))))))))
.

• 1√
2

can be produced if 1
1 can: r = R

(
St

(
R

(
St

(
R

(
St

(
St

(
St

(
R

(
St

(1
1
))))))))))

.
• 1 = arccos(0), so r = R (St (R (St (R (St (St (St (R (St (arccos(0))))))))))).

Therefore 4
3 can be produced.

A connection

“Why are you writing all this, Colin? It’s a diverting enough puzzle,
but. . . why?”
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I’m writing about it because it gave me such a lovely revelation, I
nearly jumped out of the bath.

Suppose we write our target fraction as r =
√

P√
Q

, with P = p2 and
Q = q2. Then our algorithm for working backwards to show 1 can be
produced from r (and, hence, by way of inverses, r from 1) is:

While Q �= P :

• If Q < P , swap P and Q (this is the effect of R
(

q
p

)
).

• Let Q = Q − P (this is the effect of Ts

(
p
q

)
).

This is Euclid’s algorithm for finding the greatest common factor of
P and Q! Since, by supposition, P and Q are coprime, their GCF is
1. Therefore, 1 can be produced from r and hence r can be produced
from 1 �.
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New Old School (NOS) Burrs

by Frans de Vreugd

Introduction

Gregory Benedetti is a puzzle designer from France who has designed some very 

nice and unusual puzzles. Several of his designs were entries in the Nob 

Yoshigahara puzzle design competition. One of Greg's fascinations is with 

puzzles that have a different internal mechanism than you might expect from the 

outside. His Blind Burr (entry in 2010) is a good example of that. A special group of 

puzzles he has been working on is called NOS burrs (New Old School Burrs) On 

the outside the puzzles look like a standard six piece burr (a.k.a. Chinese Knot), 

but hidden in the inside is a completely different mechanism.

Interlocking puzzles can be classified in many different ways. One way to divide 

them into different classes is to look at the movement of the pieces. The vast 

majority of interlocking puzzles have rectilinear moves for the pieces. However, 

there is also a considerable group of puzzles that use coordinate motion (CM). 

For these puzzles, two or more pieces move at the same moment in different 

directions. The internal mechanism of such puzzles mostly use diagonal cuts in 

the pieces to allow this type of movement. Stewart Coffin (USA) has designed 

many of these in the past, and nowadays Vinco Obsivac (CZ) is the specialist in 

this type of puzzle.

CM puzzles are quite different from 'standard' interlocking puzzles. For 

disassembling a CM puzzle finding the exact positions to put your fingers can be 

quite a challenge, and for assembling it often requires some dexterity to align the 

pieces exactly to their correct position. In the NOS burrs normal rectilinear moves 

are combined with coordinated motion moves. This is a wonderful surprise while 

playing with the puzzle.

Using non-orthogonal units

At IPP 32 in Washington in 2012, Greg brought prototypes of his NOS burrs. The 

puzzles looks like standard (and simple) six piece burrs, but looking at the pieces 

the average woodworker might get a heart attack! Apart from using cubical units 

many internal units are diagonal half-cubes. This may sound simple but it can 

result in really weird pieces. Greg made seven different NOS designs, six of them 

use these diagonal half-cubes, the seventh includes even more complicated 

notches.  The basic building block is much smaller than a standard diagonal half-

cube. Imagine that you subdivide a cube into six square pyramids, and then 

cutting each of these across both diagonals (see picture below).

In total Greg designed seven 

different NOS burrs, drawings 

of each of them can be found in 

the following pages.
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NOS 1 -

Compressed

Design: Gregory Benedetti

Drawing by Frans de Vreugd

Assemblies: 1

Solutions: 1

Level 2

A B C

FED

C

D

F

A

E

B
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NOS 2 -

Transfer

Design: Gregory Benedetti

Drawing by Frans de Vreugd

Level 2-2-2-2

Assemblies: 1

Solutions: 1

A B C

FED

E

C

B

F

A

D
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NOS 3 -

Round Trip

Design: Gregory Benedetti

Drawing by Frans de Vreugd

Assemblies: 16

Solutions: 1

Level 4-8-2-2-1

A B C

FED

A

C

D

F

B

E



PUZZLES |  54

NOS 4 -

Go Back

Design: Gregory Benedetti

Drawing by Frans de Vreugd

Assemblies: 2

Solutions: 1

Level 15-2-1-1

A B C

FED

E

A

F

C

D

B



PUZZLES |  55

NOS 5 -

Crenel

Design: Gregory Benedetti

Drawing by Frans de Vreugd

Assemblies: 1

Solutions: 1

Level 7-2

A B C

FED

C

A

B

D

E

F
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NOS 6 -

Dodge

Design: Gregory Benedetti

Drawing by Frans de Vreugd

Assemblies: 3

Solutions: 1

Level 10-5-1-2-2

A B C

FED

C

A

B

D

F

E



PUZZLES |  57

NOS 7 -

Seizaine

Design: Gregory Benedetti

Drawing by Frans de Vreugd

Assemblies: 1

Solutions: 5

Level 16

A B C

FED

B

E

F

A

C

D
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2,664 Coin-Sliding Font Puzzles

Erik D. Demaine∗ Martin L. Demaine∗

Abstract

We present two font designs, each with 37 symbols (letters, digits, and slash), as grid con-
figurations of the same number of coins. Each pair of symbols (say, A and B) forms a puzzle:
re-arrange the first symbol (A) into the second (B) by a sequence of moves. Each move picks
up one coin and places it in an empty grid cell that is adjacent to at least two other coins (the
“2-adjacency” rule). We also present an online puzzle video game to play all 2,664 of these
puzzles, where you can try to set the record on the minimum number of moves.

1 Coin-Sliding Puzzles

At our first G4G (G4G5 in 2002), we presented several new coin-sliding puzzles [DD04] based on
our research with Helena Verrill [DDV02]. Figure 1 shows one example. In this type of puzzle, the
goal is to transform the start configuration (drawn on the left) into the target configuration (drawn
on the right) via a sequence of “moves”. Each move picks up one coin and places it in an empty
grid cell that is adjacent to at least two other coins (the 2-adjacency rule).1 A second goal is to
minimize the number of moves that achieve the desired transformation.

Martin Gardner wrote about puzzles like this [Gar75], but on the triangular grid. Indeed,
staying on the triangular grid is probably the original motivation for the 2-adjacency rule, as these

∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA,
{edemaine,mdemaine}@mit.edu

1We do not consider a “sliding” constraint (continuous planar motion of the coin without collision), which is present
in only one puzzle in [Gar75]. The more precise name for these puzzles is “coin-moving puzzles”, as in [DDV02], but
we use the less formal term “coin-sliding” here.

→

Figure 1: Puzzle 9 from [DD04]. The n-coin version of this puzzle is the asymptotically hardest
puzzle: it requires Ω(n3) moves, and all n-coin coin-sliding puzzles on the square grid can be
solved in O(n3) moves [DDV02]. The exact constant factor is unknown, however.
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moves force the coins to remain on a triangular grid. But triangular-grid coin-sliding puzzles
turn out to be much simpler, both from a puzzle perspective and in terms of mathematics and
algorithms [DDV02]. Thus we focus here on the square-grid coin-sliding puzzles, which originate
with Harry Langman [Lan51].

Our main result with Verrill [DDV02] is a sufficient condition for a coin-sliding puzzle on the
square grid to have a solution, and a corresponding algorithm to solve these puzzles. To state the
result, we need to define the notion of “span” of a configuration of coins. Imagine you have a bag
full of extra coins, and you place as many as you can onto the board while still respecting the 2-
adjacency rule for each placement. The span is the resulting configuration, which is a rectangle or
disjoint union of rectangles (with at least two blank rows in between the rectangles). The span rep-
resents the maximum set of reachable positions that the coins could reach (even without the bag
of extra coins). Making moves can therefore never increase the span, only decrease it accidentally.

Our sufficient condition is that “two extra coins suffice” in the following technical sense:

Theorem 1 [DDV02, Theorem 2] Configuration A of coins can be re-arranged into configuration B via
2-adjacency moves on the square grid if there are two “extra” coins e1 and e2, each adjacent to two other
coins (not each other), such that the span of A − e1 − e2 contains the span of B − e1 − e2. The number of
moves is O(n3) where n is the number of coins, and the moves can be found algorithmically in O(n3) time.

This theorem tells us an easy way to design puzzles that are guaranteed solvable: just make
sure the spans of the two configurations match (or configuration A’s span is more than configu-
ration B’s span), and make sure there are two extra coins. However, it remains an open problem
how to find the fewest moves to solve such a puzzle.

2 Coin-Sliding Fonts

Over the past dozen years, we have developed several different typefaces/fonts that express text
through mathematical theorems or open problems in broadly accessible forms, often through the
use of puzzles. The fonts are all free to play with on the web.2

In this paper, we revisit sliding-coin puzzles from the perspective of mathematical/puzzle
fonts. Figures 2 and 3 show our two font designs, one with 12 coins on a 5 × 7 rectangle and
one with 13 coins on a 5 × 9 rectangle. Each font consists of 37 symbols (26 letters, 10 digits, and
slash3), where each symbol is made from the same number of coins arranged on the square grid
within the same size of rectangle (which is also the span of the configuration). You can write
messages in these fonts using our online web application.4

Every pair of symbols within the same font defines a coin-sliding puzzle. Thus we obtain
37 · 36 = 1,332 puzzles within each font, for a total of 2,664 puzzles.

2.1 Puzzle Video Game

We implemented a puzzle video game for playing all of these puzzles. You can play on any device
with a web browser5 or using an Android app6. Figure 4 shows what the user interface looks like.

2http://erikdemaine.org/fonts/
3We included slash because it plays a significant role in many of our early coin-sliding puzzles [DDV02, DD04].
4http://erikdemaine.org/fonts/coinsliding/
5https://coinsliding.erikdemaine.org/
6https://play.google.com/store/apps/details?id=org.erikdemaine.coinsliding
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Figure 2: 5 × 7 coin-sliding font. Each symbol consists of 12 coins.

Figure 3: 5 × 9 coin-sliding font. Each symbol consists of 13 coins.
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Undo Reset
Coin Sliding Font Puzzle by Erik Demaine & Martin Demaine, 2018
Start: A  Moves: 0  Undo Reset Target: B  Reverse Moves: 0

Figure 4: Coin-sliding puzzle video game. Play online at https://coinsliding.erikdemaine.org/

To play a puzzle, you select a font (5 × 7 or 5 × 9), then choose a puzzle from “All puzzles
in family” or using the “Start” and “Target” selections. Dragging coins makes moves. If you get
stuck, you can “Undo” move by move, or “Reset” to the beginning.

When you solve a puzzle, you can post your score (number of moves) along with your name.
Help us find good solutions to all the puzzles! This will give us a better understanding of the
number of moves required to solve coin sliding puzzles, which remains a mathematical mystery.

An example solution animation can be found on a special website.7

The source code is also available.8

2.2 Proof of Solvability

We prove that all of the puzzles are solvable. Theorem 1 covers most of the puzzles, as they all
have span equal to the full rectangle (either 5 × 7 or 5 × 9), even after removing two well-chosen
coins. However, not all of the configurations have extra coins neighboring two other coins, so they
are not valid choices for the target configuration B in Theorem 1. Nonetheless, we can show that
all symbol configurations are reachable from valid B configurations in Theorem 1 (and thus from
all valid A configurations, including all other symbols). Figures 5 and 6 prove each case, either
highlighting two suitable extra coins, or showing a sequence of reverse moves (with arrows) that
free up two suitable extra coins. A reverse move is the exact opposite of a 2-adjacency move, i.e.,
it moves a coin from a position adjacent to at least two other coins to any other position. Each
sequence of reverse moves can be verified by dragging coins on the right side of the puzzle video
game’s user interface.4

7http://erikdemaine.org/fonts/coinsliding/g4g.html
8https://github.com/edemaine/coinsliding
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Figure 5: Reachability proof for 5 × 7 coin-sliding font.

Figure 6: Reachability proof for 5 × 9 coin-sliding font.
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by Michael D. Dowle 
(2017) 

 
 

The vintage (late 1960s/early 1970s) “Beat the Computer” Pla-Puzzle No. 0 was the only 
puzzle published by Tenyo, Japan, with rounded puzzle pieces. This puzzle triggered my 
interest and an idea for a new puzzle design, and subsequently groups of puzzles.  I 
purchased the Pla-Puzzle No. 0 in the early 1970s.  I was, however, disappointed and 
frustrated by the puzzle design, since two of the thirteen pieces were identical. Each 
puzzle piece was a circle with up to six protuberances around the circumference, but 
there was no circular piece without any protuberances.  Instead there were two circular 
pieces with one protuberance. 
 
Replacing one of the duplicate pieces with a circle created a complete geometric set 
comprising thirteen different puzzle pieces.  This set satisfyingly filled a template with 
three-fold circular symmetry. 

 

The Combinatorial Puzzles presented here require a set of 13 puzzle pieces to be fitted 
inside a template. The objective is to find 13 solutions. Each solution must have a different 
puzzle piece covering the center of the template (except for Puzzle 8). There may be 
alternate solutions for each puzzle piece.  
 
The pieces for each puzzle are generated using the same principle and constitute a 
geometric set. A set of puzzle pieces is produced by arranging up to six shapes in every 
possible configuration around a differently shaped central piece that exhibits six-fold 
rotational symmetry (except for Puzzle 5). The templates possess three-fold rotational 
symmetry. These properties can be seen in the following illustrations. 
 
Three groups of Combinatorial Puzzles are described—each group has its own design 
characteristics, but all groups share the same common objective. 
 
Each Combinatorial Puzzle is presented on a page in a common format,  puzzle pieces 
(on left); design grid structure and puzzle template (on right); puzzle solutions (bottom). 
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The designs of the puzzle pieces and corresponding templates are different for the three 
groups presented. For the first group (Puzzles 1 through 8), 12 of the 13 pieces have 
mirror symmetry (five of which also have rotational symmetry) while the 13th piece is 
chiral. The templates possess both three-fold rotational symmetry and mirror symmetry. 
The chiral piece may be used with either face upward. The pieces are vertex-connected. 

Group 1—vertex-connected  Group 2—vertex to edge      Group 3—edge-connected 
 
 
For the second group (Puzzles 9 through 12), 12 of the 13 pieces are chiral (4 of which 
have rotational symmetry) while the 13th piece has both rotational and mirror symmetry. 
The templates are chiral with three-fold rotational symmetry. The chiral pieces may be 
used with only one face upward, the face consistent with the chirality of the template. 
The chiral pieces can have two different shapes. The pieces are connected vertex-to-edge. 
 
The third type (Puzzle 13), created by Jacques Griffioen and developed by Kate Jones, has 
12 of the 13 pieces with mirror symmetry (5 of them also have rotational symmetry). The 
13th piece is chiral and may be used with either face upward. The template has three-fold 
rotational symmetry and is chiral. The pieces are edge-connected. 
 

 —Twelve of its thirteen puzzle pieces appeared in the “Beat the 
Computer” Pia-Puzzle No. 0 published by Tenyo, Japan, in the 1960s-1970s.  The “Beat 
the Computer” puzzle used a different template design and duplicated one of the puzzle 
pieces to obtain a thirteenth puzzle piece. 

 —Some of its complete geometric set of pieces are used in the STAR 
HEXTM puzzle published by Kadon Enterprises, Inc.  The STAR HEXTM puzzle uses more 
pieces than Combinatorial Puzzle 5 and has different objectives.  

 —Some of this complete geometric set of pieces are used in the 
HEXNUTTM puzzles published by Kadon Enterprises, Inc.  The HEXNUTTM puzzles use 
more pieces than Combinatorial Puzzle 7 and have different objectives. 
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This puzzle differs from the previous versions inasmuch as the central shape and the 
surrounding shapes are congruent hexagons. An alternate objective for this puzzle is to 
find 30 solutions where every solution has a different hexagon at the center. See 
illustration below showing equivalent hexagons in the pieces. 
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“LEAVES” is a trademark of Kadon Enterprises, Inc. 
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There are many alternate possibilities for the design of the LEAVES pieces and 
templates. Some samples of design grids by Michael Dowle are illustrated below. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
© 2018 Michael D. Dowle — All rights reserved.          Printed in USA 
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Some Paper Puzzles  1

Yossi Elran 
Paper Knot Puzzle 

Make a band out of  a strip of  paper. Tie a knot in the band without cutting the band 

open (that is, without cutting the band along its width)!

Hint: What kind of a band is needed to begin with? 

Overlapping Papers Puzzle 

Arrange square sheets of  paper one on top of  the other to form a square. What is the 

smallest number of  sheets needed to ensure that no sheet is fully visible? There are no other 

limits to this puzzle. 

The following

requirement of  the solution. 

 Adapted with permission from: 1

Ilan Garibi, David Goodman and Yossi Elran, “The Paper Puzzle Book: All You Need is Paper”, 
Press, New Jersey, 2017 
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Follow up challenge: Arrange square sheets of  paper, all the same size, one on top of  the 

others to form a square. What is the smallest number of  sheets needed if  it is required that no 

sheet is fully visible? 

Quadrisecting Rectangles into Triangles Puzzle 

Find at least six different triangles that you can fold from a sheet of  printer paper, where 

each triangles area is a quarter of  the area of  the whole sheet. You are allowed to use only 

two fold lines. A ‘pinch’ made to mark a certain point on the paper is not considered a fold 

line. 

Paper Knot Puzzle Solution  

The trick lies in the preparation of  the paper band before you start cutting. The paper 

band has to be half-twisted three times. When cutting along the center line and opening up, a 

band with a knot in it is created. This is a less-known property of  Möbius bands. Generally 

speaking, making n half-twists in a strip of  paper and taping its ends will form either a one-

sided or two-sided Möbius band, depending on the parity (odd n generate single-sided bands 

while even n generate two-sided bands). When cutting along the center line of  these bands, 

either one (for odd n) or two (for even n) bands are created, with (n 1), for odd n, or 

(n 2), for even n, knots in them. 
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Overlapping Papers Puzzle Solution  

Four sheets is the minimal amount. Three that cover each other and the last sheet, large 

enough to encompass this assemble and placed behind them, solve the puzzle.  

When the sheets have to be the same size, the minimum number of  identical sheets you 

need is eight. The building block is the mutually overlapping ‘plus sign’ shape, shown below, 

made out of  four sheets of  paper. Add four more sheets for the corners. 
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Quadrisecting Rectangles into Triangles Puzzle Solution 
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The last two triangles are shown below: 

The explanation is based on the way you calculate the area of  an triangle. You can see 

that both triangles in the half-rectangle triangle have the same base length and the same 

height, hence the same area.
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Balance Puzzles 
 
 

You either love them or curse them 
 
 
 

Paper for the souvenir book 
by Rik van Grol 

 
For G4G13 

April 11 - 15, 2018 
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Balance Puzzles 
You either love them or curse them 
by Rik van Grol, NL 
Rvgrol@hotmail.com 
 
A well-known balance puzzle is the Columbus Egg. The object is to balance the egg on its tip. 
Impossible so it seems! By using other senses than just vision, such as hearing and feeling, and by 
logical thinking, some patience and above all perseverance the solution can be found. Careful 
manipulation of the egg centralizes the weight of the egg and then it can be balanced on its tip. 
Many people lack some of the above mentioned qualities and will never solve these puzzles; 
consequently they dislike them or even curse them. Some even say that they are not puzzles. If 
they would experience solving them they would realize that these are indeed puzzles and they 
would love them. 
 
Introduction 
What do I mean with a balance puzzle? When you google for the term "balance puzzle" the search 
results do not lead you towards the puzzles I mean. The balance puzzle, or weighing puzzle, 
google provides is a logic puzzle about balancing items, often coins. Other balance puzzles will 
also appear. To find the puzzles I mean you should google for the term "Columbus Egg puzzle". 
Many of the balance puzzles this paper is about are egg-like objects, but not all of them. 
 
So what is a balance puzzle? Best is to take the egg balance puzzle as an example. The object of 
the egg balance puzzle is to put the egg on its tip. With a regular egg this will result in the egg 
tipping over (not always – see the tale about Columbus), but with the egg balance puzzle there is a 
way to manipulate the egg in such a way that it will indeed stand on its tip. 
 
A famous example is the Columbus Egg presented at the World Fair in Chicago in 1893. This 
metallic souvenir egg contains a ball that can be manoeuvred in such a way that it falls down a 
tube and ends up in the tip of the egg on which it can then be stood upright. 
 
So, what are typical properties of a balance puzzle? 

• They are single piece puzzles in that they are not meant to be taken apart. 
• The puzzle needs to be manipulated in such a way that something internally is changed in 

order for the object to be balanced. 
• Most balance puzzle do not have handles or levers. 
• They can only be manipulated in a 3D-space: e.g. lifted, tilted, rotated, spinned. 
• Most balance puzzles provide no clues as to whether or not you are heading in the right 

direction to solve it. 
• With these puzzles you are, as it were, "left in the dark". 

 
These properties, that most balance puzzles have, are exactly the properties that make you either 
love these puzzles or curse them. To solve a balance puzzle you need to use other senses than 
with most mechanical puzzles. Instead of depending on visual clues you now depend on sound, 
feeling and your creative ability to crawl into the mind of the designer. Many people, and also 
puzzlers, do not like to be left in the dark. Balance puzzles can be very frustrating, and unlike 
secret opening boxes (that share similar properties) they generally lack a satisfying AHA feeling. 
Personally I am in-between love and hate. I hate balance puzzles until I have solved them, then I 
love them... 
 
In this paper I will start with some anecdotal history about egg balance puzzles. This will be 
followed by an overview of balance puzzles. Then I will talk about the different types of 
mechanisms used in balance puzzles, and how to solve them. 
 
Afterwards you can decide for yourself whether to like or to curse them... 
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Anecdotal history 
The oldest egg balance puzzle I know of is the Columbus Egg, see Figure 1. I am sure there must 
have been earlier puzzles, but not produced in the quantity as this one. I also do not have any 
record of other such puzzles from an earlier age. If a reader does, I would be very much interested. 
 
The Columbus Egg was presented at the World Fair in Chicago in 1893 as a souvenir. Wikipedia 
says the following about this event [1]: 
 

The World's Columbian Exposition (the official shortened name for the World's Fair: 
Columbian Exposition also known as the Chicago World's Fair and Chicago Columbian 
Exposition) was a world's fair held in Chicago in 1893 to celebrate the 400th anniversary of 
Christopher Columbus's arrival in the New World in 1492. 

 
Wikipedia also mentions an “Egg of Columbus” in relation to the World Fair, but this is not our 
puzzle egg. The mentioned egg is a metal egg that spun inside an electric field. Quite a novelty at 
that time… I have found no record of our puzzle egg being mentioned in relation to the World Fair, 
but it must be strongly related to the same celebration as the puzzle depicts Columbus and the 
period 1492-1892. In The Book of Ingenious & Diabolical Puzzles [2] Jerry Slocum mentions the 
Egg of Columbus as made for the Columbian Exposition. Professor Hoffmann in Puzzles Old and 
New [3] also mentions a New Egg of Columbus, but this is not our egg. 
 
So, there are quite a few Columbus Eggs... What is it about Columbus and eggs anyway? This has 
to do with a tale, and the clue of the tale is related to solving these puzzles. It is a tale from 
(according to Wikipedia) the historian Girolamo Benzoni, who wrote [4]:  
 

Columbus being at a party with many noble Spaniards, where, as was customary, the subject 
of conversation was the Indies: one of them undertook to say: "Mr. Christopher, even if you 
had not found the Indies, we should not have been devoid of a man who would have 
attempted the same that you did, here in our own country of Spain, as it is full of great men 
clever in cosmography and literature." Columbus said nothing in answer to these words, but 
having desired an egg to be brought to him, he placed it on the table saying: "Gentlemen, I 
will lay a wager with any of you, that you will not make this egg stand up as I will, naked and 
without anything at all." They all tried, and no one succeeded in making it stand up. When the 
egg came round to the hands of Columbus, by beating it down on the table he fixed it, having 
thus crushed a little of one end; wherefore all remained confused, understanding what he 
would have said: that after the deed is done, everybody knows how to do it; that they ought 
first to have sought for the Indies, and not laugh at him who had sought for it first, while they 
for some time had been laughing, and wondered at it as an impossibility. 

 
This out-of-the-box-thinking is exactly what is needed for solving many puzzles, especially these 
puzzle eggs. Quite often, maybe even always, egg balance puzzles are categorized under 
dexterity puzzles. And, yes, they certainly need some dexterity for solving, but by applying logic, 
deduction, creative thinking it can become much more a puzzle that can be solved at will. 
 
Overview of balance puzzles 
An small overview of some balance puzzles is available on the internet, on Rob’s Puzzle pages [5]. 
It starts off with the 1893 Columbus Egg puzzle but also shows several of the others presented 
below. Partly due to a link on his pages I was led to a number of patents on egg balance puzzles. 
The U.S. Patent Office devotes an entire sub-class to "Balancing Ovoids" (ccl/273/154). Most of 
the patents are from the time around the World's Columbian Exposition in 1893. Rob’s pages also 
demonstrated that there are several variants of the 1893 Columbus Egg puzzle – some with an 
inscription: “World's Fair Souvenir”. My copy of Columbus Egg does not show these words. 
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1. Columbus Egg Puzzle 
 

2. Fall Guy 3. Magic Egg Puzzle 4. Magic Egg 

 
5. The Trick 

 
6. (no name available) 7. The X super puzzle 8. L’UOVO DI COLOMBO

    
9. Tower of Pisa 

 
10. Dice 11. Clock  

    
12. Rik’s Egg Balance 2010 13. Rik’s Egg Balance 2010 14. Rik’s Egg Balance 2010 15. Ze Balancing Egg 
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Mechanisms of balance puzzles 
The mechanisms of balance puzzles and their solution type are closely related. In the table above 
different solution types are listed. The solution types relate directly to the method used to transfer 
the moving weight to a position where balance can be achieved. This is generally done by centra-
lizing the weight. The solution types listed are: 

• Path ⎯ With path I mean that there is a distinct place or position to start (to position the 
weight) and then there is a specific path or movement to make, after which the weight is 
centralized and the egg can be balanced. 

• Trick ⎯ The eggs classified as trick are not puzzles that you can solve. They are more 
attributes of a magician. A magician will make you believe the “puzzle” can be solved (the 
egg can be stood upright), but this is an illusion. The object seems to balance indefinitely, 
but in reality it does so for only a short period of say ten seconds or so. Before the balance 
is lost, the magician will pick up the egg and hand it to the audience. The audience will try 
and fail. The trick-eggs, in my view, do not actually belong in this list as they are not 
puzzles, but I keep them in to show the contrast with real balance puzzles. 

• Twisty ⎯ this relates to the fact that the puzzle itself can be altered, by twisting or shifting. 
Most balance puzzles have moving parts, but only internally and they cannot be controlled 
directly. With twisty puzzles you do have direct control, turning, shifting or otherwise altering 
the puzzle. 

• Logic ⎯ A balance puzzle generally leaves you in the dark as to what can or needs to be 
done, but observation (feeling and hearing) combined with creativity and logic may and/or 
will help you find a solution. Logic is generally combined with path or dexterity. 

• Dexterity ⎯ with dexterity the manipulation of the object ⎯the egg⎯ is meant: tilting, 
shifting, flipping, etc. When a puzzle has a high level of dexterity, it may take a lot of 
practise. 

Most balance puzzle are characterized by combinations of the above. 
 
Relating dexterity a further deliberation is required. Almost every puzzle requires a level of 
dexterity. Personally I would classify a puzzle as a dexterity puzzle if you fail more often than you 
succeed and if you cannot use logic to turn the odds.  
 
Solving balance puzzles 
Solving a balance puzzle starts by investigating the puzzle. When you solve any puzzle you start 
by making some observations. In the case of balance puzzles your eyes are not given a lot of 
clues, so you need to rely on your other senses, mostly hearing and feeling, as smelling and 
tasting generally do not really help with puzzles... 
 
At this stage the object is to determine the type of balance puzzle. Based on the suspected 
mechanism, or combinations of mechanisms, you start looking for further clues. If it is a well-known 
mechanism the task may be relatively straightforward, but if it is new then the problem is much 
more difficult. You need to imagine a new mechanism and “look” for clues. Looking in this context 
is, again, mostly feeling and hearing. This is the part that can be really satisfying or extremely 
frustrating. Satisfying if your suspicion was right and you find the path or logic and solve the 
puzzle. Frustrating if you cannot find the path, cannot imagine the new mechanism, cannot explain 
what is happening. 
 
At this point two other qualities enter the equation: patience and perseverance. Admittedly, I do not 
always have enough of these qualities to solve a puzzle by myself. Let me give you two examples: 
one with some success and one with defeat.   
 
L’UOVO DI COLOMBO – puzzle #8 
When I purchased this puzzle and received it, I was very disappointed. I felt cheated. This was an 
impossible puzzle. Just a hollow egg with a tube in the tip and a ball. The only way to balance it 
would be to repeatedly flip the egg and to try and catch the egg with the tube – virtually impossible. 
I did manage to do it once or twice, but I could not deliberately repeat it. For years I cursed this 
“puzzle”, I didn’t consider it as a valid puzzle.  Only recently while i was writing this article I got an 
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insight. I was trying to prove to myself that this indeed was not a valid puzzle, that it only is a game 
of chance; that no logic would help solving this puzzle. Then it hit me: this 
puzzle can be solved with logic. I should hold the puzzle upside down with 
the tube straight above the ball, than the only thing needed would be to 
move the tube down quicker than gravity, to catch the ball. After I got this 
idea I stood up tried it once and failed; tried it another time….success! 
Right now I cannot deliberately repeat it, but I demonstrated to myself that 
logic actually helped me to balance this egg. Still, the level of dexterity of 
this puzzle is very high, which still makes me qualify this as a bad puzzle. 
Or should I believe in a better solution and persevere? 
 
Ze Balancing Egg – puzzle #15 
This egg was a mystery to me. I initially thought this was a traditional 
balancing puzzle with some groove and a volcano to centralize the ball. 
You can feel the base of the volcano because the ball circles around it, but I could not feel any sign 
of a groove. I felt cheated, like with L’UOVO DI COLOMBO. I basically had given up, but in the 
back of my mind I thought this could not be true. It is an IPP puzzle, so there should be a solution. 
This puzzle was from IPP 35 in 2015, but the souvenir book of that IPP has not been distributed 
yet. So I contacted the organisers and asked for the solution. After I saw the solution it was still a 
challenge. My original suspicion was correct – it is a more or less traditional balancing egg. The 
groove is very hard to “feel”. Thanks to a marking on the outside of the egg ⎯very tiny and easily 
mistaken for random damage⎯ I finally found the groove. But then unlike the traditional balance 
puzzle you are supposed to flip the ball into the volcano. Initially this disappointed me, but after a 
bit of thinking I found out that it should not be a “flip”, but just a vertical toss while turning the egg 
upright. Almost always, but at least one out of two tries I succeed in solving the puzzle. Love it! 
 
Balance puzzles ⎯⎯⎯⎯ you either love them or hate them 
I have read comments on the Internet from people talking about balance puzzles. They argue that 
balance puzzles are not really puzzles, but dexterity games. This suggests that solving balance 
puzzles requires mainly dexterity and no logical thinking. I hope to have shown that most balance 
puzzles do require logic and creative thinking (out-of-the-box thinking). The main difference is that 
you need to rely on sound and feeling instead of sight. So, balance puzzles can be a lot of fun and 
very satisfying once you have cracked the solution. Otherwise you will probably curse them and try 
to avoid them. 
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Case Study 27

From Untouchable 11 to Hazmat Cargo
This article is a reprint of the article with the same title published in Game & Puzzle Design, 
vol. 3, no. 2, 2017, pp. 27-34, edited  by  Russ  Williams  and  prepared  for  publication  by  
Cameron Browne, and reprinted with permission.

Carl Hoff, Applied Materials

Untouchable 11 is a packing puzzle designed by Peter Grabarchuk. This paper describes Un-
touchable 11 and its ‘untouchable’ concept, and explores applying this concept to other hexomino
packing puzzles. Every untouchable packing puzzle can be mapped to an equivalent conventional
packing puzzle (in which pieces can touch), enabling the use of existing software tools for analysis.
Exploring this puzzle space led to the creation of a new puzzle, Hazmat Cargo.

1 Introduction

U NTOUCHABLE 11 is a packing puzzle con-
sisting of eleven pieces based on the eleven

possible unfoldings of a cube, which themselves
are a subset of the 35 hexominoes.1 The goal is
to place all eleven pieces onto a board such that
no pieces touch, even diagonally at corners. The
pieces can be rotated and flipped, but must be
placed orthogonally onto the grid of the board.
The puzzle offers three challenges:

1. Easy (9×17 board).

2. Medium (10×15 board, Figure 1).

3. Hard (12×12 board).

This paper describes how this idea of ‘un-
touchable’ packings has spread to other puzzles,
and ultimately led to a new design of mine, de-
scribed in a later section.

1.1 History

Untouchable 11, designed by Peter Grabarchuk,2

first appeared on the gaming website
SmartKit.com,3 which sponsored the develop-
ment of the associated app. In October 2008,
it was launched with a contest4 which gave a
Smartkit t-shirt and the book Puzzles’ Express 3 [1]
to the first person to solve all three challenges.

Figure 1. Screenshot of the medium (10×15) Untouchable 11 challenge.

1http://mathworld.wolfram.com/Polyomino.html
2http://www.grabarchukpuzzles.com
3http://smart-kit.com
4http://smart-kit.com/s1512

Hoff, C., ‘From Untouchable 11 to Hazmat Cargo’, Game & Puzzle Design, vol. 3, no. 2, 2017, pp. 27–34. c© 2017
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Figure 2. Solution to Golomb’s problem.

The concept of a polyomino packing puzzle,
in which no two pieces can touch even at a corner,
appears to be original to the Grabarchuk family.
In his book Polyominoes [2], Solomon Golomb asks
what is the minimum number of pentominoes
that can be placed on an 8×8 checkerboard such
that none of the remaining ones can be added.
The answer is five, and Figure 2 shows one such
configuration. This sparse covering of the board
seems to be a precursor to Grabarchuk’s untouch-
able concept.

Kadon Enterprises, Inc.5 also has a few games
using similar concepts. Squint, a logic game
played on a 9×12 grid, using their Quintillions set
(1980). The goal is to make the last move by leav-
ing no space on the grid for the opponent to place
another quint (their brand name for pentomino).

Players in turn select a quint from the com-
mon pool and place it on the grid. The first quint
must cover one of the board’s corner squares.
Later quints must be placed so that at least one of
their corner points touches a corner point of any
of the quints already on the board, and no sides
may touch. Figure 3 shows such an arrangement.

This rule that corners must touch and sides
may not touch results in a similarly sparse cov-
ering of the board. It also appears in the well-
known game Blokus (2000) as a restriction on
each player’s own pieces.

Cornered is a similar logic game played using
the Sextillions set. In that game, the pieces (the 35
hexominoes plus one duplicate) are divided be-
tween two players. In turn, players select one of
their own pieces and place it on a 15×15 grid. A
player’s own pieces may not touch each other, not
even diagonally at corners. A piece may touch
opponent’s pieces only at corners (no sides), but
are not required to touch. The last player to put a
piece on the board wins.

Figure 3. Squint example.

The only other puzzle I am aware of which
uses the eleven unfoldings of a cube is a puz-
zle Kate Jones presented as her exchange gift
at the 11th Gathering for Gardner. She named
this puzzle 11 Magic Cubes.6 Other than using
the same pieces, it bears little resemblance to Un-
touchable 11.

2 Solving

In 2008, I solved the easy and medium challenges
by hand. After days of struggling with the hard
challenge, the closest I came to solving it is shown
in Figure 4.

Figure 4. Near-solution to the hard challenge.

At this point, Peter was contacted and asked
if the solution was unique. It turned out that
the initial challenges were solved by Grabarchuk
family members without the aid of computer al-
gorithms. Peter knew of only two solutions to the
hard challenge, and the total number of solutions
was an unknown at that time. So now there were
two puzzles to solve: I still needed to solve the

5http://www.gamepuzzles.com
6http://www.gamepuzzles.com/g4g11cubes.pdf
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hard challenge, and — more interestingly — to
count the total number of solutions!

Unable to find a solver capable of solving
these untouchable packing problems, I created
my own, shown in Figure 5. Algorithms for
solving packing puzzles typically use a recursive
backtracking search [3]. Knuth describes how to
efficiently implement this type of search in his
paper ‘Dancing Links’ [4]. Matt Busche also has
an article7 suggesting how to combine a number
of relevant strategies and ideas, including those
developed by de Bruijn [5] and Fletcher [6].

Figure 5. The author’s Untouchable 11 solver.

My Untouchable 11 solver uses several of
these strategies. The source code is in Quick Basic
4.5 and is available.8 The code works and found
all seven solutions to the hard challenge of Un-
touchable 11, but it took over 24 days to complete
its search. The output of that initial search is avail-
able,9 but be warned that it contains solutions.

However, before the 24-day search was com-
pleted, it became apparent that the puzzle could
be mapped to a conventional (touching) packing
puzzle. This would allow the use of many other
existing solvers which are much more efficient.

Figure 6. Mapping to a touching packing puzzle.

The idea is to map each original piece to a
new piece defined by squares centred at vertices

of the original piece, and increasing the width
and height of the playing grid by one square. Fig-
ure 6 shows the original 12×12 challenge viewed
this way: an equivalent task is to place the ver-
tices onto the 13×13 grid of vertices. This results
in exactly fifteen empty vertices.

In effect, this thickens each piece by wrapping
it in an additional half-square wide layer. This
additional part of each piece neatly fits into the re-
quired gaps between pieces in the original version
of the puzzle. Each resulting piece is one square
higher and one square wider. Figure 7 shows
how two original pieces become two touching
thicker pieces under this mapping.

Figure 7. Half-unit thickening of pieces.

The fastest of the polyomino solvers that were
readily available in 2008 was Gerard Putter’s Poly-
omino Solver.10 Once the hard challenge was
mapped to its conventional touching equivalent
and fed into this solver, the seven solutions were
all found in under an hour. This work was com-
pleted before my 24-day search finished running.

Figure 8. Result from Gerard’s Polyomino Solver.

7http://www.mattbusche.org/blog/article/polycube
8http://wwwmwww.com/gapd/Untouch.TXT
9http://wwwmwww.com/gapd/SOLUTION Finished.TXT

10https://gp.home.xs4all.nl/PolyominoSolver/downloadsolver.htm
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The latter results confirmed the count and
solutions found with Gerard’s solver. Fig-
ure 8 shows output from Gerard’s solver for the
medium challenge. (We will not spoil the solu-
tion to the hard challenge here!) It found 482,482
solutions in 104,334 seconds (roughly 29 hours).

3 New Challenges

With a general solver, the first space to explore
was additional rectangular boards as new chal-
lenges for these eleven original pieces. Table 1
shows these results. The ‘Empty’ column gives
the number of empty cells in the mapped version,
i.e. number of untouched vertices in the original
version.

Board Solutions Name Empty
12×12 7 Hard 15
11×13 33 14
10×15 482,482 Medium 22

9×16 174 16
9×17 65,516,235 Easy 26
8×18 15 17
7×21 60,327 22
6×24 8 21

Table 1. Solution counts for Untouchable 11 challenges.

Five new challenges were found that all fall
between the medium and hard challenges in
terms of difficulty. It was also proven that one
entire row of the easy challenge, the 9×17 board,
could be left empty, because the 9×16 board is
solvable. Untouchable 11 now consisted of eight
total challenges and received the Gamepuzzles
Annual Polyomino Excellence Award for 2015.11

Figure 9 shows the trophy.
A physical version of Untouchable 11 was

created as the author’s exchange puzzle for the
2017 International Puzzle Party (IPP37) in Paris,
France. This puzzle included all eight chal-
lenges. The pieces were made of laser-cut acrylic
by Sculpteo.12 The board was 3D printed in
Polyamide using selective laser sintering, SLS, by
i.Materialise.13 Figure 10 shows the final product.

Figure 10 does not show a solution, as two
pieces touch at corners. A state with a single cor-
ner touch is known as a near-solution. These were
counted for the original Untouchable 11 hard chal-
lenge in November, 2016, and 3,092 near solutions
were found. This count was later verified by Lan-
don Kryger in December 2016.

Figure 9. Gamepuzzles Annual Polyomino Excel-
lence Award for 2015.

Figure 10. Carl Hoff’s IPP37 exchange puzzle.

4 Widening the Search

The search for a set of eleven hexominoes which
can be placed on a 12×12 board with a single
unique solution was started in 2012. That work
was done by creating modified code for each sub-
set and running it through Gerard Putter’s Poly-
omino Solver.

11http://www.gamepuzzles.com/gape15.htm
12https://www.sculpteo.com
13https://i.materialise.com
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As each subset had to be coded by hand, this
was slow tedious work, and the work was put
on hold when a set with just two solutions was
found. That set uses one hexomino which is not
an unfolding of the cube. It was shared with
Peter Grabarchuk and resulted in the release of
Untouchable 11: Master Challenge14 in March
2012, shown in Figure 11. This work was initially
prompted by the need for an exchange gift15 for
the 10th Gathering for Gardner, G4G10.

The search resumed late in 2016 with the as-
sistance of programmers Brandon Enright and
Landon Kryger. Landon had created a new, effi-
cient solver which could test all possible subsets
of a given size from a master set on a given board,
to find puzzles with unique solutions.

Figure 11. Untouchable 11: Master Challenge.

Figure 12. The 35 hexominoes and their vertex duals.

14http://www.puzzles.com/PuzzleClub/Untouchable11MasterChallenge
15http://wwwmwww.com/gapd/U11MasterChallenge.pdf
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Board N Empty Subsets Tested Search% Single% 0 Solns 1 Soln >1 Soln
5×5 2 8 210 210 100.0% 18.5714% 124 39 47
6×6 2 21 210 210 100.0% 0.0000% 0 0 210
6×6 3 7 1,330 1,330 100.0% 6.0902% 1,074 81 175
7×7 3 22 1,330 1,330 100.0% 0.0000% 0 0 1,330
7×7 4 8 5,985 5,985 100.0% 8.6717% 4,365 519 1,101
8×8 4 25 5,985 5,985 100.0% 0.0000% 0 0 5,985
8×8 5 11 20,349 20,349 100.0% 4.2017% 4,750 855 14,744
9×9 6 16 54,264 54,264 100.0% 0.0792% 199 43 54,022
9×9 7 2 116,280 116,280 100.0% 0.0439% 116,213 51 16

10×10 7 23 116,280 116,280 100.0% 0.0000% 0 0 116,280
10×10 8 9 203,490 203,490 100.0% 5.0980% 79,601 10,374 113,515
11×11 9 18 293,930 293,930 100.0% 0.0003% 0 1 293,929
11×11 10 4 352,716 107,010 30.3% 1.9325% 100,236 2,068 4,706
12×12 11 15 352,716 352,716 100.0% 0.0020% 49 7 352,660
12×12 12 1 293,930 293,930 100.0% 0.0024% 293,920 7 3
13×13 14 14 116,280 116,280 100.0% 0.0000% 116,280 0 0
14×14 16 0 20,349 20,349 100.0% 0.0000% 20,348 0 1

Table 2. Summary of search results. N indicates number of pieces.

The first thing to decide on was the master
set that would be used: as shall be shown, there
is no reason to include all 35 hexominoes, and a
smaller set of candidates would mean a shorter
search time. Figure 12 shows the complete set of
35 hexominoes and their vertex duals, created by
mapping each vertex to a square, i.e. the thicker
versions of each piece. 27 vertex duals have four-
teen squares (shown in blue), but seven have thir-
teen squares (shown in green), and one has only
twelve (yellow). We decided to use only the first
21 hexominoes as the master set. The hexominoes
22 through 35 were removed from consideration
for the following reasons:

Hexominoes 28-35 have fewer than fourteen
squares in their dual versions, so they seem easier
to place. Hexominoes 22-35 can all be contained
in a 3×3 or a 4×2 box. These are all more com-
pact than the original eleven unfoldings of a cube,
so they seem easier to place.

Hexominoes 22 and 23 both map to the same
vertex dual polyomino. Any set containing both
could never have a single solution, since those
two pieces could always swap positions, so at
least one must be excluded. Hexominoes 24 and
25 also both map to the same vertex dual poly-
omino. Hexomino 26 is unsuitable, as no vertex
dual has a protruding square which could fit in
the small gap on its right side. Therefore, any
solution containing this piece produces a second
solution with this piece rotated 180◦.

After we selected the master set, the results
shown in Table 2 were generated after many
months of CPU time. We found seven sets of
eleven hexominoes with unique solutions on the
12×12 board. Also note that there are seven sets
of twelve hexominoes which also have unique

solutions on the 12×12 board.
Table 3 shows all 11-piece and 12-piece sets

with unique solutions. These are excellent puz-
zles left for the reader to solve. It may seem
counter-intuitive, but the 12-piece sets are much
easier to solve than the 11-piece sets. This is due
to the availability of only a single empty node,
which allows one to backtrack much sooner, thus
simplifying the search.

Set Hexominoes
A 9 10 12 13 14 15 16 17 18 20 21
B 8 9 10 11 13 15 17 18 19 20 21
C 8 9 10 11 12 13 15 17 18 20 21
D 8 9 10 11 13 15 16 17 18 20 21
E 1 8 9 11 12 13 15 17 18 20 21
F 1 11 12 13 14 15 16 17 19 20 21
G 4 8 9 12 13 15 16 17 18 20 21
a 1 2 3 4 5 6 7 8 10 11 13 14
b 1 2 3 4 5 6 7 8 10 11 13 18
c 1 2 3 4 5 6 9 11 12 13 18 21
d 2 3 4 5 6 7 9 10 11 13 16 18
e 1 2 4 5 6 8 9 10 11 12 14 18
f 1 2 3 4 5 7 8 10 11 12 14 16
g 1 2 3 5 6 7 8 9 11 14 16 19

Table 3. 11 (A–G) and 12 (a–g) piece hexomino sets.

During this search, the need arose to design a
puzzle for the IPP37 design competition. The ini-
tial candidates were the 11-piece sets with unique
solutions seen above. But it was thought that
these may be too difficult to be fully appreci-
ated by most puzzlers, so smaller boards and
fewer pieces were also considered. The search
was focussed on square boards, because a com-
pact board (with a lower perimeter-to-area ratio)
will typically maximise difficulty. A good exam-
ple of this is the Eternity Puzzle,16 whose nearly
circular board is shown in Figure 13.17

16http://www.mathpuzzle.com/eternity.html
17Figure derived from: http://www.archduke.org/eternity/solution/index.html
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Figure 13. Eternity Puzzle solution by Alex Selby.
Eternity pieces by Christopher Monckton c© 1999.

Out of the 293,930 sets tested for the 9-piece
puzzle on an 11×11 board, only a single set was
found to have a unique solution. This set was
explored and found to be very interesting for the
following reasons:

1. It has only a single solution.

2. It uses a square board.

3. It has 3,761 near-solutions.

This single set has more near-solutions than
the 3,092 near-solutions of the Untouchable 11
hard challenge, which has seven actual solutions.
This puzzle also contained eighteen empty cells in
its mapped version, three more than the original
Untouchable 11 hard challenge. This is the largest
number of empty cells found in any puzzle of this
type with a unique solution to date.

The nine hexominoes found in this set are 8,
9, 12, 13, 15, 17, 18, 20, and 21. This puzzle was
the one chosen for the design competition. In
keeping with the untouchable theme, the pieces
are physically designed to resemble groups of six
industrial drums containing hazardous materials.

The board was designed to suggest a barge.
The goal is to pack the nine groups of six hazmat
drums onto the barge, an 11×11 array, such that
no two pieces touch, not even at corners. (Any
contact could lead to a catastrophic chemical re-
action!) Figure 14 shows the puzzle submitted
to the competition. All components were de-
signed in SolidWorks,18 and 3D printed in steel
or polyamide by i.Materialise or Shapeways.19

5 Open Questions

Here are two open hypotheses, neither of which
have been proven:

1. The 9-piece set used in Hazmat Cargo is the
only 9-piece subset of the hexominoes to
have a single solution on the 11×11 board.

2. All other 9-piece subsets have multiple so-
lutions on the 11×11 board; there are none
with no solutions.

There are (35
9 ) = 70, 607, 460 possible 9-piece

subsets of the 35 hexominoes. Of these, only
293,930 have been searched, i.e. only about 0.42%.
The sets that have been searched contain the
hardest-to-place pieces.

Since they all have solutions, it is believed
that adding easier-to-place pieces to the mix will
not result in sets without solutions, or other sets
with just a single solution. Still, neither hypothe-
sis can be asserted with certainty. Please contact
the author if you are able to prove either hypoth-
esis.

There is also the question of what fun and
interesting puzzles may exist in the space of un-
touchable hexomino packing puzzles with rect-
angular boards. That is the next task slated for
Kryger’s solver. If the piece sets are expanded to
include other polyominoes and the board shapes
are not restricted to just squares or rectangles,
then there are even more possibilities.

6 Conclusion

While Hazmat Cargo did not win any awards at
the design competition, it did receive numerous
compliments, including the thematic barge and
hazmat drums. Several commented that the phys-
ical design fit the untouchable concept perfectly.
It was fun to design and took on a significantly
different aesthetic than my previous designs.

Aside from the simple pleasure of designing
a new puzzle, the lesson here is to take a new
look at the puzzles you have enjoyed. In this
case it was Peter Grabarchuk’s Untouchable 11,
which introduced a new concept to polyomino
packing puzzles. This concept proved to open
a very vast and interesting area which proved
worthy of exploration. Five new challenges were
added to the original Untouchable 11 puzzle. The
Untouchable 11: Master Challenge was created
and resulted in a new app being released and
enjoyed. And the exploration resulted in a very
difficult 9-piece puzzle named Hazmat Cargo.

18http://www.solidworks.com/
19https://www.shapeways.com/
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Figure 14. The Hazmat Cargo puzzle.
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The Dezign-8 Puzzle  1

 
Lyman Hurd  2

 
 

Abstract This paper describes some of the intriguing properties of the Dezign-8           
puzzle published by Kadon Enterprises. Sixty-four tiles are arranged in an 8x8 grid             
matching edges. All patterns formed this way have the property that the number of              
simple closed loops always equals the number of connected components. An upper            
bound on the number of components is derived and the various degrees of symmetry              
possible. are described  
 
Keywords: puzzle, tiling. 

Introduction 
Created by Bill Biggs in 1959, Dezign-8[1] pictured in Figure 1, has 64 tiles representing 
the various ways a path can emerge from one, two, three or four sides of a square. 
 

 
Figure 1: The Dezign-8 Puzzle 

The solution in Figure 1 has eight connected components and eight “loops” (by which we 
mean connected components in the complement not including the outside.)  The fact 
that these two counts are the same is not a coincidence as further shown below. 
 
For the purposes of this paper, the types of tile are assigned names.  All of the tiles are 
mirror symmetric except for the LEFT and RIGHT tiles which are each other’s mirror 
images. 

1 Dezign-8 is a trademark of Kadon Enterprises, Inc. ©2000. 
2 Address correspondence to: Lyman Hurd lyman.hurd@gmail.com. 
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Tile Name Count Rotations 

 
PLUS 4 1 

 
STRAIGHT 4 2 

 
DIAGONAL 8 2 

 
END 16 4 

 
CORNER 16 4 

 
TEE 12 4 

 
RIGHT 2 4 

 
LEFT 2 4 

  64  

Table 1: Distribution of tiles. 

Loops = Components 
Figure 2 shows solutions with one component and one loop and two components and 
two loops.  Other figures show solutions with varying numbers of loops and components 
but in every case the two are equal (e.g., Figure 1, 8 components, 8 loops, Figure 4, 11 
components, 11 loops). 
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One loop, one component. Two loops, two components. 

Figure 3: More sample solutions. 

 
The property that the number of loops equals the number of components has to be a 
property not only of these kinds of tiles, but of their frequency.  For example, Figure 2 
illustrates two different solutions with other sets of tiles violating this equality. 
 
 

  

32 Components 0 Loops 1 Component 49 Loops 

Figure 3: Counterexamples with different tile sets. 

By Euler’s Polyhedral Formula[3] all polyhedra (equivalently connected graphs drawn 
on a sphere) satisfies the following relationship among vertices. edges and faces: 
 

 E F  2V  +  =   

 
The plane can be considered a sphere with one point punctured, or equivalently we can 
consider the entire region outside the graph as comprising one face which leads to the 
equation for the plane: 
 

 E F  1V  +  =   
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And finally, we note that for a connected graph component (C=1) and for a graph with 
more than one component one can add an edge and subtract a component without 
affecting V or F hence: 
 

 E F   0V  +  C =   

 
This means that to show that loops = components , , it suffices to show that CF =   

. EV =    

 
To show the relationship, one associates each solution with a graph by adding vertices to 
some of the tiles as illustrated in Table 2.  On those tiles with vertices, each line from the 
vertex to the edge of the table represents half a graph edge since two such segments are 
required to join one vertex to another. 

Tile Name Count Vertices Edges 

 
PLUS 4 1 2 

 
END 16 1 1/2 

 
TEE 12 1 3/2 

 
RIGHT 2 1 1/2 

 
LEFT 2 1 1/2 

  Weighted 
Sum 

36 36 

Table 2: Tiles with vertices added. 

 
Figure 3 shows a solution marked with its associated graph. 
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Figure 4: A solution with its associated graph. 

 
Note that the central square in Figure 4 has no vertices whatsoever.  The CORNER and 
DIAGONAL tiles as well as the diagonal portion of the LEFT and RIGHT tiles can form 
closed loops, but in each case it is a simple loop contributing one loop and one 
component simultaneously and therefore having no effect on the difference: 

.oops ComponentsL   

 
Note that with the current set of tiles, adding up the total number of edges is, as 
required equal to the total number of vertices.  Using the labeling in Table 1 and 
collecting terms one reaches Equation 1 which gives necessary and sufficient conditions 
for a combination of these tiles to satisfy the Euler property: 
 
Equation 1: 2 N   N N NN T EE +  P LUS =  END +  LEF T +  RIGHT  

Maximal Solutions 
A solution will be called “maximal” if it exhibits as many components (or loops) as 
possible for a given set of tiles.  The first question that arises is what this maximal 
number is.  The most efficient way to form a connected component is to connect two 
END tiles together.  Alternatively one can join four corner tiles.  For the purposes of this 
enumeration the corners provided by CORNER tiles are topologically equivalent to the 
diagonal lines of the DIAGONAL, RIGHT and LEFT tiles.  Setting aside for the moment 
the PLUS, TEE and STRAIGHT tiles and trying to form as many components as possible 
from the remaining tiles, one can form 19 connected components as illustrated on the 
left of Figure 3.  While this is an upper bound, it only is achievable if the tiles we did not 
use can be incorporated into a full solution.  It is apparent that on their own there is no 
way to form the remaining PLUS. TEE, STRAIGHT tiles into an additional component. 
Such as extension is illustrated on the right of Figure 3. 
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(a) 19 Components with CORNER, 
DIAGONAL, END tiles. 

(b) Solution extended using all tiles. 

Figure 5: Maximal number of components. 

Summarizing, an upper bound on the number of components achievable with a tile set is 
given by: 
 
N  2N  N  N )/4 (N  N  )/2( CORNER +  DIAGONAL +  LEF T +  RIGHT +  END +  LEF T + N RIGHT  

 
simplified to the following formula for an upper bound,  for the number ofU  

components: 
 
Equation 2: (N  2N  3N  3N  2N ) U

4
1

CORNER +  DIAGONAL +  LEF T +  RIGHT +  END =   

 
Combining Equation 1 and Equation 2 one can derive a formula that only depends on 
pieces with “corners” (whether straight as in CORNER pieces or slanted as in 
DIAGONAL). 
 
Equation 3: (N  2N  N  N  2N  4N ) U

4
1

CORNER +  DIAGONAL +  LEF T +  RIGHT +  T EE +  P LUS =   

 
What this bound implies is that in a solution with the maximum number of components 
and loops, every corner has to form the corner of its own loop.  This constraint restricts 
the form of such a solution and should make searching for such solutions much faster. 

Symmetries 
As has been noted above, solutions can be left-right and top-bottom symmetrical or can 
be symmetrical in both diagonals.  Figure 6 shows examples of each type. 
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Orthogonal Symmetry Diagonal Symmetry 

Figure 6: Different types of symmetry. 

 

 

Figure 7: Daniel Austin’s orthogonally symmetric maximal solution. 

 
Question 1: Figure 7 shows an orthogonally symmetric maximal solution discovered in 
2015 by Daniel Austin.  What is the largest number of components that can be achieved 
for a diagonally symmetric solution? 
 
Question 2: Being maximally symmetric introduces a number of constraints on a 
solution.  In searching for  an orthogonally symmetric solution, the author worked 
independently only to discover that he had rediscovered this solution.  Is this maximal 
orthogonally symmetric solution unique (apart from a trivial 90 degree rotation)? 
 

Dihedral Symmetries 
Left-right and diagonal symmetries cannot be achieved simultaneously because having a 
diagonal and an orthogonal axis of symmetry implies that the solution is rotationally 
symmetric and this is not possible with the default set of tiles. 
 

 



PUZZLES |  126

As illustrated in Figure 8, a solution with all eight dihedral symmetries would require 
the presence of a multiple of eight STRAIGHT tiles and a multiple of  four RIGHT and 
LEFT tiles, whereas the original set has four of the former and two each of the latter. 
 

  

Each STRAIGHT piece forces seven more. Each LEFT or RIGHT piece forces three 
more. 

Figure 8: Tiles forced by dihedral symmetry. 

 
However, by altering the default set of tiles by making the adjustments shown in Table 
2, a set of tiles can be arranged that satisfies Equation 1, and therefore maintains the 
property that Loops = Components while allowing a fully symmetrical solution seen in 
Figure 9. 
 

Tile Name Count Delta 

 
STRAIGHT 8 +4 

 
END 8 -8 

 
CORNER 20 +4 

 
TEE 8 -4 

 
RIGHT 4 +2 

 
LEFT 4 +2 

Table 2: Distribution of new tile set. 
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Figure 9: An alternate tile set admitting all eight dihedral symmetries. 
 

Question 3: How many components/loops can be formed with this new set of tiles? 
Note that the upper bound equation yields 19 in this case as well, but is this achievable? 

Enumerating Solutions 
When searching for positions, it is also noted that the DIAGONAL and PLUS are 
interchangeable in any pattern and in any pattern the DIAGONAL pieces can be rotated 
90 degrees without affecting any other pieces. 
 
In the orthogonally symmetric case, the pattern is determined by one quadrant which 
contains on PLUS and two DIAGONALS.  The DIAGONALS can be oriented in any of 
four ways and the PLUS can take any of the three positions giving twelve distinct 
positions by permuting these pieces. 
The same argument applies to the TEE and LEFT/RIGHT pieces.  For the orthogonally case the 
tiles used comprise one LEFT (or RIGHT and three TEE tiles yielding three possibilities as the 
asymmetric piece can take any of the four positions (orientation is fixed).Combined with the 
observations above, when searching for solutions, by arranging the DIAGONAL pieces are 
PLUS pieces and the LEFT/RIGHT and TEE pieces, every solution of this simplified puzzle can 
be rearranged to form a total of 48 different solutions. 
 
In the general case where we do not enforce symmetry constraints and instead allow the LEFT, 
RIGHT and TEE pieces to be permuted, the PLUS and DIAGONAL pieces to be permuted and 
the DIAGONAL pieces to be oriented symmetry, each solution can be rearranged in: 
 

( )2  1, 20 95 56 230, 30, 00( )
4
16

4
12 8

=  8 × 4 × 2 =  6 4  
 
different ways.  
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Four Logical Deduction Problems
from Famous Motion Pictures

Justin Kalef

Introduction

Stumped while trying to come up with a suitable gift for the Gathering, I procrastinated by switching 
back and forth among some movies on television. Imagine my delight when it dawned on me that, 

I reproduce those scenes here for your solving pleasure. True, the scenes may be slightly different 
from how some cinema lovers will remember them: I blame the lapses on my own faulty memory. 

to check your answer, please feel free to contact me at jkalef@philosophy.rutgers.edu.

Puzzle 1

Sam Spade, private investigator and master of  logical deduction, has his hands full dealing with a gang of  four crim-
inals (Kasper Gutman, Brigid O’Shaughnessy, Joel Cairo, and Wilmer Cook). He knows that one of  them always 
tells the truth, one of  them always lies, and the other two alternate between true and false statements (that is, if  they 
make a true statement, the next statement they make is false, and vice versa). One of  them has the gun that killed 
Spade’s partner, Miles Archer. Spade needs the gun to give to Police Detective Tom Polhaus, who will be arriving 
soon. When he asks these four characters about the gun, the following conversation ensues.

Spade: All right, Cairo, cough up the gun if  you’ve got it.

Cairo: Excuse me, sir, but Miss O’Shaughnessy has it.

O’Shaughnessy: No, Sam, it’s Cairo who has it.

Cairo (trying to contain his anger): Mr. Spade, Miss O’Shaughnessy tells nothing but lies.

O’Shaughnessy (getting angry in turn): Why, I’ve never told a lie in all my life! 

that is.

Gutman (laughing): By gad, sir, I’m a man who always speaks truthfully.
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Spade: Oh, yeah, he assures me he’s honest. But if  I’m not sure about someone’s honesty, I shouldn’t take his word 

Spade: People lose teeth talking like that.

Spade: All right, fellows. No need to start breaking up the furniture over this. It’s pretty clear now who has the gun 
and who’s been lying about it.

Puzzle 2

Imagine visiting the Rocky Mountains, at a grand, luxurious hotel whose employees are all, to say the least, unusual. 
Half  the employees are sane, and have been all their lives: these employees believe everything that is true and disbe-
lieve everything that is false. The other half  are insane, and have been insane all their lives: they believe everything 
that is false and disbelieve everything that is true. Moreover, half  the employees are chronic liars: every statement 
they make is false, or so they believe. The other half  are absolutely honest: every statement they make is true, or so 
they believe. It’s not possible to tell, from looking at a hotel employee, whether he or she is sane and honest (and 
hence always truthful), sane and dishonest (and hence always untruthful), insane and honest (and hence always un-

one employee is the caretaker.

employee’s clothing, the following conversation ensues between them:

Torrance: Look, Mr. Grady: you believe that I believe that you believe that I’m the caretaker.

Torrance: (smirking) Mr. Grady, you’re the caretaker of  this hotel.
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Torrance: (smiling after a confused pause) Mr. Grady, I’m not insane.

Grady: I hope you don’t mind my saying so, sir, but I am fully sane. I should know, Mr.    
Torrance. I’ve always been sane.

Puzzle 3

In the late 1980s, Detective Kimball, a private investigator, was hired to look into the disappearance of  Paul Allen, 

Harvard (in which case they belong to the secretive Boden club). He also learned that members of  the Walrus club 
take a lifelong oath to always make true statements if  their business cards have a lettering type that contains an R 
in its name, and to always make false statements otherwise. Each Boden club member, by contrast, swears to only 
make true statements if  his business card’s lettering type doesn’t contain an R in its name, and to always make a false 
statement otherwise. The only confounding factor is that a few members of  either club earn VIP status, in which 
case they have to do the opposite of  what they promised in their oaths. All such VIP members are able to make Fri-
day night reservations at Dorsia, a fashionable Manhattan restaurant. It is impossible for anyone who is not a VIP 
member to make such a reservation.

Detective Kimball’s conversation with the other vice presidents goes as follows:

Detective Kimball: Thank you all for taking the time to meet with me. Let’s start with you, Mr. Bateman. Where 

Patrick Bateman: Let’s see... I was returning some videotapes that night.

Patrick Bateman: Bryce, it is a new peak of  professionalism. It’s a great, great song, and a personal favorite.

David van Patten: Paul Allen made a reservation at Dorsia that night. He was the only one of  us who could get one.

Detective Kimball (turning to Carruthers): I forget now, Mr. Carruthers. Did you tell me in our pre-interview that 

Luis Carruthers: I’m not the sort of  person who could have said that.

Patrick Bateman: Here’s Paul Allen’s business card. Note its tasteful thickness. And that lettering...
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Marcus Halberstram: No, van Patten’s card has Romalian type, or something else with an R in it.

Craig McDermott: No he didn’t, Marcus, you nitwit. He went to Harvard.

Craig McDermott: Because I was there with him. We were in the same year.

Patrick Bateman: I had to kill him last week because of  his business card. It even had a watermark.

Luis Carruthers: Patrick, don’t even joke about such a thing.

Craig McDermott: Actually, he’s in London. A friend of  mine just had lunch with him there yesterday.

At this point, Detective Kimball logically deduced what had happened to Paul Allen and was able to close his case. 
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Puzzle 4

(Don) Vito Corleone, the head of  an underworld family, has to keep his wits about him. There has been an attempt 
on his life by Philip Tattaglia, the head of  a rival family, presumably over a dispute about whether Corleone should 

-

Corleone no longer knows which family heads are involved in which criminal enterprises. But he does know that the 
heads of  families that are involved in drugs but not gambling only make false statements, as do the heads of  fami-
lies that are involved in gambling but not drugs. Heads of  families that are not involved in drugs or gambling only 
make true statements, as do heads of  families that are involved in both drugs and gambling.

Corleone welcomes everyone to the meeting. Then, he listens as the heads of  the families speak as follows:

They need your support, Don Corleone.

in that, Don Corleone.

Carmine Cuneo: I had nothing to do with the attack against you, Don Corleone.      
And don’t worry about Stracci. Stracci had nothing to do with that attack.

Victor Stracci: That’s right, Don Corleone. We Straccis earn money from drugs. We earn money from   
gambling. But I never acted against you, directly or indirectly.

Philip Tattaglia: I alone acted against you, Don Corleone. Nobody here directed me to do it.

After some further discussion, Don Corleone makes his peace with Tattaglia and embraces him, ending the meet-
ing. But unlike the heads of  the other families, Don Corleone is a great master of  deductive reasoning.  On the way 
home from the meeting, in a private conversation with his adopted son, he speaks disparagingly of  Tattaglia, saying 

-

Fill in the blank:
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Crypto Word Search

Tanya Khovanova

G4G 13

A B C D E F G

H C I F B B C

D I J K L A J

C I F M A C K

N O O N F B I

F J O P P Q G

H F A R K J B

ART IDEA MAGIC MATH NOTE

PI PROBLEM PUZZLE RIDDLE TRICK
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Two Tiling Problems 
 

Anany Levitin 

 

A Questionable Tiling 

Is it possible to tile an 8×8 board with dominoes (2×1 tiles, which can be placed either 

horizontally or vertically) so that no two dominoes form a 2×2 square? 

 

 

 

        

        

        

        

        

        

        

        

 

 

 

A solution can be found in Algorithmic Puzzles by Anany Levitin and Maria Levitin, Oxford 

University Press, 2011, p. 90. 
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Trapezoid Tiling 

An equilateral triangle is partitioned into smaller equilateral triangles by parallel lines dividing 

each of its sides into 2  equal segments where n is a positive integer. The topmost equilateral 

triangle is chopped off, yielding a region like the one shown below for n = 3. This region needs to 

be tiled with trapezoid tiles made of three equilateral triangles of the same size as the triangles 

composing the region.  (Tiles need not be oriented the same way, but they need to cover the region 

exactly with no overlaps.)  Design a divide-and-conquer algorithm for this problem. 

 

      

 

 

 

A solution can be found in Algorithmic Puzzles by Anany Levitin and Maria Levitin, Oxford 

University Press, 2011, pp. . 
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Symmetrix Puzzles

Andy Liu

Symmetrix puzzles are a new craze where pieces are put together to form symmetric figures.

They may be rotated or reflected, but may not overlap. In this article, we analyse a three-piece

puzzle designed by Vladimir Krasnoukhov of Russia. It consists of a very large 30◦ − 60◦ − 90◦

triangles, a similar triangle which is much smaller, and a trapezoid with two right angles and two

angles of measures 60◦ and 120◦ respectively. These are shown in Figure 1.
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Figure 1

The most probable motivation for this puzzle is the equilateral triangle partitioned into six

congruent triangles, as shown in Figure 2 on the left. Two of these triangles are discarded, while

three of the remaining ones are combined into a large triangle, as shown in Figure 2 on the right.
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Figure 2

Despite their difference in size, these two pieces can be put together to form a symmetric figure,

in two different ways, as shown in Figure 3.
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Figure 3
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As such, this would not have been much of a puzzle. In a crafty move, the large triangle is further

enlarged as shown in Figure 4, and a new trapezoidal piece congruent to the the enlargement is

introduced.
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Figure 4

For the puzzle to work, the height of the trapezoid can be chosen arbitrarily. However, if it is

too large, then we have two large pieces of more or less the same size, and the psychological impact

of one very large piece versus two relatively small ones is lost. This height is chosen to be one-third

of that of the original equilateral triangle.

In Figure 4 on the right, we subtract the two small pieces from the large piece, leaving behind

a symmetric shape. This leads to the first of two symmetric figures that can be constructed with

these three pieces, as shown in Figure 5.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

..

.

..

.

..

...........................................................................................................................................................................................................
..
.
..
..
..
.
..
.
..
..
..
.
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
.................................................................................................................................................................................................................................................................................................................

..
..
...
..
...
..
..
...
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
..
...
..
..
...
..
...
...
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
...
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.

.......................................................................................................
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.........................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5

The two small pieces may be subtracted from the large piece in another way, as shown in Figure

6 on the left. This leads to the second solution of the puzzle, as shown in Figure 6 on the right.

These two solutions are based on the same idea as those in Figure 3.
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Figure 6

In another crafty move, Alan Tsay of Canada replaces the smaller triangle by an even smaller

similar triangle, whose shortest edge is equal in length to the height of the trapezoid. This time,

there is only one way in which the two smaller pieces may be subtracted from the large piece in

order to leave behind a symmetric shape. This is shown in Figure 7 on the left.
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Figure 7

However, when we move the two smaller pieces to the other side, we discover that the trapezoid

overlaps the large triangle in a rhombus. This is shaded in Figure 7 on the right.
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In Figure 8, we subtract the smaller triangle from the large one. Then we take the symmetric

difference between the trapezoid and what is left of the large triangle, by removing their intersection,

which is shaded. The symmetric difference consists of a kite left over from the large triangle, and

a rhombus from the trapezoid. They have a common axis of symmetry.

This time, we obtain the desired solution shown in Figure 9. Note that this could have emerged

had we reflected the two smaller pieces in Figure 7 on the left across the longer leg of the large

triangle.
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Figure 9

The similarity between the components of these two puzzles may be exploited in many ways. In

a small group presentation, one small triangle may be substituted surreptitiously for the other. In

a large group presentation, the two puzzles may be handed out to participants seated in alternating

columns.

It should be pointed out that subtraction is also a form of taking the symmetric difference.

In this case, the intersection happens to be identical to the smaller piece. It may be argued that

finding the symmetric differences is not any easier than finding the symmetric figures themselves.

Nevertheless, it does give us some additional things to look for, and broadens the avenue of approach

to the problem. A good starting point is forming the union of two pieces with some aspect of

symmetry.
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by David Nacin
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Knight Mazes

Mike Naylor

Matematikkbølgen / Amborneset Center for Mathematics Creativity

7125 Vanvikan Norway

Email: abacaba@gmail.com

Abstract

Knight  mazes are a set  of squares on a square lattice upon which a chess knight may move. We examine 
elements of mazes which can be both attractive and puzzling, and discuss two methods of creating mazes.

Knight Mazes I - Elements

A chess knights sits alone on a small island in a peaceful pond. Across the pond, a trophy awaits 

on another island (Figure 1). A moment’s reflection may reveal that the scene is a puzzle – the 

knight is free to hop from island to island, moving as a chess knight does, with the goal of 

reaching the trophy. The route to the trophy is riddled with topological surprises, and you are 

invited to try out the puzzle before reading further.

Figure 1: Knight Maze I - Relax
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 The image is an example of a knight maze and is composed of 3 main elements. The first  

shape to the lower right is a double loop-the-loop (see also Figure 2). The knight must hop in a 

counter-clockwise loop  and travel two times around the loop before leaving the area. The central 

diagonal area is a triple braided ladder (see also Figure 3) with the squares are colored in three 

different colors to help the puzzle-solver distinguish between the three routes. The knight must 

travel up, down, and up the ladder again before moving on. Squares to side on the top  and bottom 

facillitate switching between the three interwoven pathways. The final element is a double-Y (see 

also Figure 4) which contains a mix of possibilities for jumping, making for a enjoyable and 

puzzling finish to the maze.

   

Figure 2: double loop Figure 3: triple braided ladder Figure 4: double-Y

 Knight maze elements are fun to design, and it  can be challenging to create shapes that are 

both attractive and interesting to solve. Figure 5 shows the design of an element based on a 

square. A knight can travel in a loop of 8 positions that form the outside of a square. By removing 

one of these positions from the route we break the loop, creating starting and ending points on the 

square that can be connected to outside positions.

Figure 5: The square  Figure 6: The square as a maze element

 The movement of the knight allows independent paths to cross and weave around each other. 

Figure 6 show two octagonal paths beside each other with no connection between them. If the 

paths are dupicated and shifted down one square, we now have 4 octagons. The octagons are 

connected pairwise – it is possible to jump between a pair of octagons but not possible to jump to 

the other pair of octagons. Figure 7 shows the two independent sets of squares colored 

accordingly. This shape can be used as the basis for a puzzling maze such as the one shown in 

Figure 8. The knight starts on one color and the goal is on the other color. An extra square is 

added in a subtle position allowing for transition from one set of colors to the other. Can you 

discover the square that is the key to solving this maze? (Hint: look for a break in symmetry.)
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Figure 6: two octagons Figure 7: independent paths Figure 8: Maze built on four octagons

Knight Mazes II - Destructive construction

Figure 9 shows Knight Maze II - Danger!, an artwork maze with a rather difficult solution. The 

reader is encouraged to attempt a solution before reading the details of its construction and thus 

the key to solving this puzzle.

Figure 9: Knight Maze II – Danger!

 While the earlier knight’s mazes are built constructively, adding squares to create interesting 

routes, we can make a difficult puzzle by building destructively, removing squares in order to

limit the knight’s movements.
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 In the middle of a blank board, a knight has 8 positions it can move to (Figure 10). If we 

block all of these positions, a knight is trapped in the center. We then remove one of these blocks 

and then block all of the positions the knight can move to from this new position as shown in 

Figure 11. A knight on one of the two squares in the center is free to move back and forth 

between the two, but cannot go further anywhere else on the board.

      

Figure 10: blocked   Figure 11: the start of a forced path

By stringing together a chain of such elements, we can create a long pathway with no 

exits or entrances. Figure 12 shows a chain of seven linked but isolated positions (marked with 

black dots). The colored squares are both sufficient and necessary to isolate the path. 

Figure 12: Seven linked but isolated positions Figure 13: Implementing the chain in the maze

 To complete the maze, we add the goal at one end of the chain and remove one of the 

squares blocking access to the other end of the chain (Figure 13). The chain is now open to the 

rest of the board. This is the pattern used to create Knight Maze II – Danger! The board is 

extended to the left with plenty of open squares to give a feeling of freedom, but the goal can be 

reached only by first coming to the key position at the start of the chain.

Endgame

 Knight mazes can be fun and surprising. They  are also ideal for garden mazes or in public 

spaces, where participants can hop from tile to tile. A human-size knight maze is currently being 

built at Amborneset Math Creativity Center in Norway.
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Sudoku Ripeto and Custom Sudoku Sampler
by Miguel Palomo
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How to solve cryptic crosswords: go to www.picciotto.org/hot and scroll down to Cryptics, How To 

The Ambidextrous Puzzle 
a G4G cryptic crossword by Henri Picciotto 

Italicized clues consist of definitions for two ambidextlousry related words. Which of the two you enter 

into the diagram will become clear if you make sure that when the diagram is filled, you can shade in 

three additional squares, and circle two additional letters, so that all 13 shaded squares, and all 12 circled 

letters respectively spell relevant two-word phrases if read from left to right in each row, top row to 

bottom row.

Across 
 1 Accommodated a flock (4) 
 3 Café is toxic: head of management requests 

protective gear (4,5) 

 9 Affected one thousand new wave rockers' 

comeback (5) 

 10 Commercial time interrupted by guys and 

dudes, for a change (9) 

 11 Officer and medical investigator (7) 
 12 Lit relatives (7) 
 13 To dine poorly, ingest LSD, facing 

backwards to show real commitment (10) 

 16 Early man’s a mother (4) 

 18 Peasant personality (4) 
 20 Imploring search engine to include rotten 

cheese (10) 

 24 Most significant (optimal) outside irregular 

gig (7) 

 25 Nonstandard and brave (7) 
 26 Confines Henry in (oops!) non-union 

establishments (4,5) 

 27 Digression from unorthodox ideas (5) 

 28 Fraudulent course by Rolling Stone (9) 

 29 Fresh skin (4) 

Down 
 1 Murders Vietnamese leader with audio 

equipment on fateful date (9) 

 2  Admired and knocked down (7) 
 3 Weak talent (5) 
 4 Heck! Bee on broken part of skull (9) 

 5 Arab city switching final pair from the 

middle of the road (6) 

 6 Driven and strengthened (7) 
 7 Full of chopped dates (5) 

 8 Unspoiled in Sweden: iceberg (6) 

 14 Is equivalent to stiffer core (3) 

 15 Blackjack: Cheating Tony’s left inside at 

end of game (6-3) 

 

 

 

 

 

 

 

 16 Tree has deteriorated (3) 

 17 Most powerful, outwardly goth connections 

in New England university (9)   

 19  Move backwards, missing limbs (7) 
 21 Gather together and apprehend (6) 
 22 Visualize one crazy enigma (7) 

 23 Reaches exit, having failed test (4,2) 

 24 Derek, seen over reference work, expressed 

disapproval (5) 

 25 Call 5 was tagged, apparently (5) 
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Packing polyominoes into a

3-by-n box is as hard as it gets∗

Tom van der Zanden

Abstract

A popular way of classifying the hardness of puzzles is by determining their member-
ship of and completeness for the complexity class NP – essentially determining whether
a certain kind of computation can be “represented” by an instance of the puzzle. The
problem of determining whether a given set of polyominoes can be arranged into a
given shape is NP-complete, and this is the case even if the target shape is a 2 × n
rectangle. From a classical viewpoint, this essentially settles the complexity. We take a
more detailed look at this problem: we show that the problem of packing polyominoes
into a 3-by-n rectangle is - in some sense (exact complexity) - even harder, but that
moving up to 4× n or even

√
n×√

n does not complicate things further.

1 Introduction

Figure 1: A simple polyomino puz-
zle.

The term polyomino to describe a shape made of sev-
eral connected (unit) squares was coined by Solomon
Golomb [2]. In a polyomino packing puzzle, the goal
is to take several polyominoes and arrange them into
a given target shape. A simple example of such a puz-
zle is shown in Figure 1, where a set of 5 polyominoes
can be arranged into a 3× 7 rectangle.

At G4G6, Demaine and Demaine [3] presented a
proof that established the NP-completeness of poly-
omino packing, even if the pieces are relatively small
rectangles. This work is part of a larger framework,
showing that four types of puzzles are equivalent to
each other: polyomino packing, jigsaw puzzles and
signed and unsigned edge-matching puzzles. This
equivalence is rather interesting: given (for instance)
a jigsaw puzzle, it is possible to construct an equiv-
alent polyomino packing puzzle (equivalent in the
sense that the solution to one puzzle will tell you
the solution to the other), but it is also possible to
do the same in the opposite direction.

Knowing the polyomino packing is NP-complete tells us that, in some sense, solving the
puzzle is “hard”. Informally, a problem is in NP if it is easy to check the validity of a solution.
As an example, while solving a (partially-filled) Sudoku might be hard, given a solution
(i.e., a fully-filled Sudoku puzzle) one can easily check that the solution is valid. Therefore,
(generalized) Sudoku is an NP problem. As a negative example, determining whether white
has a winning move in a given Chess position is (probably) not an NP problem: even if I tell
you the answer there is no way to (efficiently) prove the answer is correct: I might solemnly

∗This article presents results from the paper [1], but with a presentation aimed at a more general audience.
The paper [1] is joint work with Hans L. Bodlaender.
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swear that, yes, indeed, white does have a winning move, but you’d have to take my word
for it (and if I told you what move it was, you’d still have no way of knowing whether that
move is indeed a winning one).

Thus, problems in NP correspond to “puzzles” where the goal is to find some (combina-
torial) object that satisfies some easy-to-check criteria. We believe that for many problems
in NP there are no efficient (i.e., polynomial) algorithms, but the proof that P �=NP is still a
major open problem. However, despite (essentially) not knowing whether “hard” problems
exist at all, reductions still allow us to get good evidence that certain problems are hard: if
one believed that solving jigsaw puzzles is hard, then the reduction of Demaine and Demaine
[3] shows that solving polyomino packing must also be hard, because otherwise one could
solve a jigsaw puzzles by constructing an equivalent polyomino packing instance and solving
that instead.

There exist NP-complete problems, which have the property that they can be used to
solve any problem in NP (and as previously mentioned, this includes polyomino packing).
This is quite surprising, as to prove this one has to (essentially) show that it is possible
to encode an arbitrary polynomial computation (of “checking” a candidate solution) as an
instance of your problem or puzzle! Thankfully, we do not need to bother with this rather
tedious task because once we know one NP-complete problem, we can use it to show the
completeness of other problems by far simpler reductions.

2 A (very) simple proof that Polyomino Packing is hard

The following problem is well-known to be NP-complete:

3-Partition
Input: 3n integers a1, . . . , a3n with Σ3n

i=1ai = M .
Question: Can we create n groups of 3 integers ai, aj , ak each, such that ai+aj+ak =

M/n and each integer is used exactly once?

One could view this problem as having 3n gold bars (with differing weights) which need
to be distributed among n people so that each person takes home the same amount.

There is a very simple way to model 3-partition as polyomino packing: for each integer
ai we create a 1×ai polyomino, and we create one huge 2× (M +n+1) polyomino, that has
n “gaps” of size M/n. We then ask whether this set of polyominoes can be packed into a
2×(M+n+1) rectangle. A solution to this problem exists only if the 1×ai polyominoes can
be partitioned into n groups of size M that fit exactly into the gaps in the large polyomino.
An example of this reduction is shown in Figure 2.

Figure 2: Figure illustrating a very simple proof showing the NP-completeness of packing
polyominoes into a 2-by-n box. Note that the instance shown here does not correspond to
a valid 3-partition instance, as there are too few gaps in the large piece.

Solving this polyomino packing puzzle means that each gap of size M in the large poly-
omino must be filled up with ai-polyominoes summing up to the size of that gap. Thus, a
solution to this polyomino packing puzzle corresponds to a solution to 3-Patition. Note that
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while this does not guarantee that each gap gets exactly 3 polyominoes, there is a standard
technique for working around this.

One might think that if even such a simple variant of Polyomino Packing is already
hard, then there is not much more to say about the problem. However, there is a surprising
amount to learn about the complexity of the puzzle by studying it more closely.

3 On to Exact Complexity

The proof of NP-completeness, such as the one presented in the previous section, establishes
hardness of a problem in the sense that, if P �=NP, then there is no polynomial-time algorithm
for the problem. Any algorithm (or person) solving the puzzle must take (asymptotically) a
superpolynomial number of steps. However, just knowing there is no polynomial algorithm
does not give us a very precise sense of how hard a problem is: nlog n and 22

n

are both not
polynomial, but there is a world of difference between them. Instead, we are going to look
at the exact complexity of the problem: what is the best running time we can achieve, even
if it is not polynomial?

Figure 3: Top: The algorithm for
packing polyominoes into a 2×n box
exploits the fact that the box discon-
nects into Y -monotone components
when placing a polyomino. Bottom:
a Y -monotone polyomino can be de-
scribed with three integers.

For 2×n Polyomino Packing, there exists an algo-

rithm solving the problem in 2O(n3/4 log n) time. For
the details of this algorithm we refer to [1], here we
just summarize the key point: consider an algorithm
that places the polyominoes in some fixed order from
the first polyomino to the last. As the algorithm
progresses, it has to track which squares of the 2× n
target shape have already been filled up and which
ones have not. As there are 22n subsets of a 2 × n
board, this is the number of possible solutions the
algorithm would have to consider.

However, we can use the following trick: if we are
packing polyominoes into a 2×n target shape, not all
subsets of the target shape are possible and through
a combinatorial argument we can show that it suffices

to consider 2O(n3/4 log n) possible target shapes. For
the details of this analysis we again refer to [1] but
the main observation is that there are only O(n3) so-
called Y-monotone polyominoes with n squares (and
at most 2 squares high), whereas in contrast (if we
allow arbitrary shapes) we can create 2O(n) different
polyominoes with n squares.

So, is this 2O(n3/4 log n)-time algorithm optimal? Can we do better?
Of course, we have no hope of proving any superpolynomial lower bounds on the running

time of an algorithm for any NP-complete problem, since this would mean showing that
P�=NP. Instead, we have to make an assumption on the complexity of some base problem, and
then deduce lower bounds on the running time of other problems from there. A commonly
made assumption is the Exponential Time Hypothesis (ETH):

Assumption 1 ((Exponential Time Hypothesis) [4].) There is no algorithm solving
Satisfiability of formulas with n variables in 2o(n)-time.

Satisfiability is a problem that asks whether a logical formula has a satisfying assignment.
An example of such a formula is (x1 ∨ x2) ∧ (x1 ∨ ¬x2), which has variables x1 and x2. To
each variable we must assign either true (T ) or false (F ), and the formula as a whole should
be satisfied. Each variable xi has two corresponding literals, the positive literal xi which
has the same truth value as the variable, and the negation ¬xi which has the opposite truth
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value. For example, x1 = F, x2 = T is not a satisfying assignment. The first clause (x1∨x2)
is satisfied (since x2 is true), but the second clause (x1 ∨ ¬x2) is not since both x1 and ¬x2

(the negation of x2) are false. Setting x1 = T will satisfy the formula (regardless of the
value of x2).

We may assume that the formula is given in conjunctive normal form, that is, each clause
consists of taking the logical OR of several literals, and the formula consists of taking the
logical AND of several such clauses. We may furthermore assume that each clause consists
of at most 3 literals, and that each variable occurs in at most 3 clauses.

Note that the Exponential Time Hypothesis states that there is no 2o(n)-time algorithm.
This means that there could be, for instance, a 1.0001n-time algorithm, but not a 1000n

0.99

-
time one. Essentially, the function appearing in the exponent must be linear.

Suppose that we had a hypothetical reduction from Satisfiability to Polynomio Packing,
that maps a n-variable formula to a Polyomino Packing instance with a target shape of area
n2. Supposing we also had an algorithm, solving Polyomino Packing for target shapes of
area A in time 2A

0.25

. If we applied this algorithm to the instance created by the reduction,
we would obtain a 2(n

2)0.25 = 2
√
n-time algorithm for Satisfiability! Thus, if we believe

the Exponential Time Hypothesis (and this hypothetical reduction existed), we would con-
clude that no such algorithm can exist. In fact, the reduction tells us that (hypothetically)

Polyomino Packing would not have a 2o(
√
A)-time algorithm.

One good piece of evidence in favor of the Exponential Time Hypothesis is that, over-
whelmingly often, the best known reduction and best known algorithm match up perfectly.
E.g., for almost all problems for which we know 2O(

√
n)-time algorithms we have reductions

that turn n-variable Satisfiability formulas into O(n2)-size problem instances [5].
Unfortunately, the chain of reductions from Satisfiability to 3-Partition is quite compli-

cated, and does not give a tight lower bound for Polyomino Packing in a 2 × n box (and
therefore, we do not know the answer to the question we stated a few paragraphs earlier).
In the following section, we will instead derive a tight lower bound for polyomino packing
into a 3× n box.

4 Lower bound for 3× n Polyomino Packing

In the previous section, we showed that there exists an algorithm solving Polyomino Packing

with a 2 × n box as target shape in time 2O(n3/4 log n). In this section, we will discuss the
following contrasting result:

Theorem 1 Assuming the Exponential Time Hypothesis, there is no algorithm solving Poly-
omino Packing where the target shape is a 3× n rectangle in 2o(n/ log n) time.

This truly is a big “jump” in difficulty between the difficulty of the two problems (of
packing into a 2 × n rectangle v.s. a 3 × n one). The main reason for this gap is that we
can use binary encoding of integers to construct polyominoes. Given an binary integer, say,
10110111, we can create a 2 × 8 polyomino consisting of a single solid top row, and then
a bottom row that has a square whenever the bitstring has a 1. This gives us, using 2n
squares, 2n distinct polyominoes.

So why does this explain the difference in hardness between the 2 × n case and the
3 × n case? Certainly, the polyominoes we just described are only two squares high so
they could also appear in a 2× n Polyomino Packing instance. However, the big difference
is, that in the 2 × n case, the way two such polyominoes can interact is very limited.
However, as illustrated in Figure 4, in the 3×n case, we can create a second polyomino (the
complementary polyomino) that fits together only with that specific other polyomino into a
rectangle 3 squares high.
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Figure 4: Building two polyominoes that interlock in a specific way using bitstrings.

Suppose that we have some satisfiability formula with O(n) variables and clauses. Us-
ing the method sketched above, we can construct for each variable and clause a unique
corresponding polyomino and complementary polyomino which have the property that the
corresponding polyomino for a specific variable (or clause) only fits together with the comple-
mentary polyomino for that specific variable (or clause). Figure 5 illustrates this, showing
corresponding and complementary polyominoes for variables x1, x2 and clause c3. Note
that, thanks to the property previously discussed, these polyominoes need only be O(logn)
squares wide to be able to distinguish O(n) distinct clauses and variables.

Figure 5: Complementary and corresponding polyominoes. Note that the picture is shown
compressed in the X-axis.

Figure 6: Blocking polyomino
(top) and wildcard (bottom).

We can further create two other polyominoes, the
blocking polyomino and the wildcard polyomino - shown
in Figure 6. The wildcard fits together with any cor-
responding polyomino, whereas the blocking polyomino
only fits together with the wildcard. These two polyomi-
noes are important building blocks in the reduction.

In the following, as an example, we will use the follow-
ing formula: (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2). Note
that for simplicity this is a 2-CNF formula (the solving of
which is not even NP-hard) but the reduction easily gen-
eralizes to 3-CNF and above. We number the variables
x1, x2 and the clauses c3, c4, c5 (so (¬x1 ∨ ¬x2) is c5).

Let us look at a single variable (say x1). If we make
x1 true, we would satisfy c3. If instead we make x1 false, we would satisfy c4 and c5. We
encode this information in a formula-encoding polyomino, shown in Figure 7.

Figure 7: Polyomino encoding the clauses satisfied by assignments to x1.
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The formula-encoding polyomino is constructed by taking (the corresponding polyomino
for) x1, c3, the blocking polyomino (for padding, to make the two parts of equal length),
again x1, c4, c5 and finally another copy of the corresponding polyomino for x1.

Note that we thus end up with a single polyomino with two parts: both parts are
delineated by two copies of the corresponding polyomino for variable x1 (and they share the
middle copy), and each part contains polyominoes corresponding to clauses that would be
satisfied by a true or false assignment respectively.

Next, as shown in Figure 8, we create the variable-setting polyomino for x1: we simply
take a copy of (the complementary polyomino for) x1, two wildcards, and another copy of
x1.

Figure 8: Variable-setting polyomino for x1.

There are exactly two possible placements for this variable-setting polyomino: either
it is packed together with the first “part” of the formula-encoding polyomino, or packed
together with the second “part”. The former placement corresponds to a false assignment
to x1 (since the clauses that would be satisfied by a true assignment are covered by the
polyomino, leaving us free to pack clause polyominoes into the places created for clauses
satisfied by a false assignment), the latter placement to a true assignment.

We repeat this process for every variable, creating one formula-encoding and one variable-
setting polyomino for each. Finally, we create clause-checking polyominoes, which are just
copies of the complementary polyominoes for each clause (one copy for each clause). The
entire set of polyominoes created by the reduction (when applied to the example formula)
is shown in Figure 9.

Figure 9: Overview of the construction created in the reduction for the example formula
(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

To pack the thus created polyominoes into a rectangle 3 squares high, we must place
the variable-setting polyominoes together with the formula-encoding polyominoes, and their
relative placement gives the truth assignments for each variable. We will then have space to
pack all the clause-checking polyominoes only if the formula is satisfiable. More technical
details are given in [1].

Note that if we start with a formula with O(n) clauses/variables, we end up creating
a Polyomino Packing instance with a 3 × O(n log n) target shape (each building block is
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O(logn) polyominoes wide, and we use O(n) of them). This thus (under the Exponential
Time Hypothesis) rules out a 2o(n/ log n)-time algorithm.

5 Conclusions

The lower bound proof, presented in the previous section, is tight: even for an arbitrary
target shape with area n, we can solve Polyomino Packing in 2O(n/ log n) time. For the
details, we again refer to [1]. This means that, unless the Exponential Time Hypothesis is
violated, both the algorithm and the reduction are optimal.

Packing Polyominoes into a 1 × n box is trivial, packing them into a 2 × n box is
moderately hard, and packing them into a 3 × n box is harder, and actually as hard as it
gets: the lower bound for 3 × n Polyomino Packing is tight against the algorithm we have
for solving general Polyomino Packing – and thus, 3 × n Polyomino Packing is rightfully
“as hard as it gets”, since it requires as much time to solve as solving any other polyomino
puzzle, while solving 2× n puzzles can be done faster.

These results give us some insight into not only the fact that Polyomino Packing is
hard, but also why it is hard. The proof of hardness for 3 × n polyomino packing exploits
that polyominoes inside a 3 × n box can have complex interactions, and we only need
polyominoes of area O(logn) to identify n distinct pieces. For 2×n Polyomino Packing, the
algorithm exploits precisely the fact that the pieces can not interact in very complex ways.
Furthermore, the algorithm for general Polyomino Packing exploits the following symmetry:
in a Polyomino Packing instance with total area n, at most n/ log n polyominoes can consist
of more than log n squares, and the remaining (at most n) polyominoes have at most log n
squares. The worst case running time is achieved exactly when the polyominoes have area
exactly log n, and the instance created in our reduction has precisely this property.
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Puzzles that Solve Themselves

Peter Winkler ∗

February 23, 2018

Abstract

Roughly speaking, we say that a puzzle “solves itself” if the stupidest way you can
think of to get an answer works. Often, that means guessing an answer, and then fixing
it in the obvious way until it becomes a solution. But how do you know when this happy
state of affairs exists?

1 Problems

Let’s start with a simple example.

Flipping the Bulbs

In front of you is a 9× 9 array of light bulbs, some on, some off. At the left end of
each row, and at the top of each column, is a switch that will reverse the state of
every bulb in that row or column.

Is it possible to flip switches in such a way that every row and every column
has most of its bulbs on?

The obvious thing to do here is to find some line (row or column) that has most of its
bulbs off, then flip its switch. Trouble is, that might cause some intersecting lines to go from
mostly on to mostly off; thus, you might increase the number of bad lines. Then, after more
corrections, you might find yourself back at the original configuration without having found a
solution.

But a little thought will convince you that this process can never cycle back to any previous
configuration, and in fact will solve the problem rather quickly. The key observation is that
when you flip a line that has more bulbs off than on, you increase the total number of lit bulbs.
This can’t go on forever and only reaching a solution can stop you.

∗Department of Mathematics, Dartmouth College, Hanover NH 03755-3551, USA. Research supported by
NSF Grant DMS-1600116.
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Sometimes you don’t even have to be clever enough to find any possible route to a solution.

Breaking a Chocolate Bar

You have a rectangular chocolate bar marked into m× n squares, and you wish to
break up the bar into its constituent squares. At each step, you may pick up one
piece and break it along any of its marked vertical or horizontal lines.

How should you break up the bar so as to minimize the number of breaks
needed?

This puzzle, which I first heard from the late, great mathematician Paul Halmos, looks
geometrical but isn’t. The fact is, breaking the m × n bar into its constituent square takes
exactly mn − 1 breaks, no matter how you do it, simply because every break increases the
number of pieces by one.

Obvious when you know it, but many smart folks have been led astray by the grid lines
and failed to count pieces.

The next puzzle really does have some geometric content.

Red Points and Blue

Given n red points and n blue points on the plane, no three on a line, can you
find a “heterosexual” pairing of red and blue points so that if you connect each red
point to its blue mate with a line segment, no two line segments cross?

Let’s be dumb and match up the points any old way, then draw in the corresponding line
segments. Maybe they never cross!

If they do, pick two segments that cross, and switch partners to that they don’t cross any
more. Great. But, of course, that action might create many more crossings. Ugh.

Ah, but uncrossing two segments always reduces the total length of the crossings. Why?
Because crossing segments are the diagonals of a convex quadrilateral, and replacing them
with opposite sides reduces length since they no longer have to meet in the middle of the
quadrilateral. (Technically, we are employing the “triangle inequality” here.)

There are only a finite number of ways (namely, n factorial) to match up the red and blue
points, so eventually you must reach a matching with no crossings.

Conceptually speaking, you can prove non-algorithmically that such a matching exists by
just choosing, from the start, the matching that minimizes the sum of the pairwise distances
between matched pairs of points. But if you really need to find the matching, the above
untangling scheme typically works quite fast.

We continue with a familiar campus entity–the Athletic Committee.
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Picking the Athletic Committee

The Athletic Committee is a popular service option among the faculty of Quincunx
University, because while you are on it, you get free tickets to the university’s sports
events. In an effort to keep the committee from becoming cliquish, the university
specifies that no one with three or more friends on the committee may serve on
the committee—but, in compensation, if you have three or more friends on the
committee you can get free tickets to any athletic event of your choice.

To keep everyone happy, it is therefore desirable to construct the committee in
such a way that even though no one on it has three or more friends on it, everyone
not on the committee does have three or more friends on it.

Can this always be arranged?

This problem (in an abstract form, with the number 3 replaced by an arbitrary integer
k) arose in the work of my computer science colleague Deeparnab Chakrabarty. What’s the
dumbest way to try to solve it? How about this: start with an arbitrary set S of faculty
members, as a prospective Athletic Committee. Oops, Fred is on the committee and already
has three friends on the committee? Throw Fred out. Mona is not on the committee, but has
fewer than three friends on it? Put Mona on. Continue fixing in this haphazard manner.

Now, why in the world would you expect this to work? Clearly, the above actions could
make things worse; for example, throwing Fred off the committee might create many more
Monas; maybe we should have thrown off one of Fred’s on-committee friends instead. So there
doesn’t seem to be anything to prevent cycling back to the same bad committee. Moreover,
even if you don’t cycle back, there are exponentially many possible committees and you can’t
afford to consider every one. Suppose there are 100 faculty members in all; then the number
of possible committees is 2100 > 1030 which, even if you spent only a nanosecond considering
each committee, would take a thousand times longer than all the time that has passed since
the Big Bang.

But if you try it—and if there’s one idea that you take from this paper, it’s try it!—you
will find that after shockingly few corrections, you end up with a valid committee. And this
happens whether in situations where there is only one valid committee, as well as when there
are many.

How can this be? Well, as in Flipping the Bulbs, perhaps there is something that is improv-
ing each time you throw someone off or add someone to the current prospective committee.
Let’s see: when you throw someone off, you destroy at least three on-committee friendships;
when you put someone on, you add at most two. Let F (t) be the number of friendships on
the committee minus 21

2 times the number of people on the committee at time t. Then when
Fred is thrown off, F (t) goes down by at least 1

2 . When Mona is put on, F (t) again goes down
by at least 1

2 . But F (0) can’t be more than (100× 99)/2− 250 = 245 and F (t) can never dip
below −250, so there can’t be more than 2× (245− (−250)) = 990 steps total. (A computer
scientist would say that the number of steps in the process is at worst quadratic in the number
of faculty members.)

In practice, the number of steps is so small that if there are 100 faculty members and you
start with (say) the empty committee, you will reach a solution easily by hand. Of course,
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you’ll need access to the friendship graph, so you might need to do some advance polling. It’ll
be interesting to see who claims friendship with whom that isn’t reciprocated!

Sometimes the correction process is continuous.

Squaring the Mountain State

Can West Virginia be inscribed in a square?

It must be tough living in a state with two panhandles, but that doesn’t mean you can’t
make a square map of your state in which the state outline exactly reaches all four edges.
Certainly you can make a rectangular map with this property, just by orienting the state in
the familiar way—north equals up—and drawing horizontal and vertical lines through the
northernmost, southernmost, easternmost and westernmost points in the state. You won’t
have a square; West Virginia is slightly wider than it is tall.

Now rotate the state slowly clockwise (say), moving the horizontal lines smoothly up and
down and the vertical ones left and right so as to stay tangent to the state boundary. When
you’ve got the state rotated 90 degrees, so that it’s northern panhandle is pointing to the
right, the rectangle in which it is inscribed will be too tall to be a square instead of too short.
It follows (by the intermediate value theorem, if you must know) that at least once during the
rotation, the horizontal and vertical sides of the rectangle were the same length. And at that
moment, you had WV where you wanted it—inscribed in a square.

We wind up with a marvelous puzzle devised by ace probabilist and puzzle-maker Ander
Holroyd, who as you read this is visiting Cambridge University.

Self-Referential Number

The first digit of a certain 8-digit integer N is the number of zeroes in the (ordinary,
decimal) representation of N . The second digit is the number of ones; the third,
the number of twos; the fourth, the number of threes; the fifth, the number of
fours; the sixth, the number of fives; the seventh, the number of sixes; and, finally,
the eighth is the number of distinct digits that appear in N . What is N?

If you try to work out this number by intelligent reflection, it ain’t easy. Instead, pick any
8-digit number, say M , and write out a new 8-digit number M ′ as follows: the first digit of M ′

is the number of zeroes in M , the second is the number of ones in M , etc., and the last digit
is the number of different digits in M . Now repeat, starting with M ′. In short order you will
find that you have converged to a number that doesn’t change, and that’s the unique answer;
I leave it to you to discover it.

There’s one catch. In all the previous problems, we could determine exactly why the
obvious procedure works so well. But neither Ander nor I knows why this particular puzzle is
self-solving; some similar ones are not. If you figure it out, let us know!
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Sketching a Projectile on a Ramp

Gary Antonick

Stanford H-STAR

antonick@stanford.edu

Nick McKeown (Stanford CS) shared this problem with me back in 2010, and I immediately 

featured it in The Times Numberplay column. Readers readily identified these two angles. But 

why stop there?

https://wordplay.blogs.nytimes.com/2010/09/06/numberplay-a-little-reflection/
https://wordplay.blogs.nytimes.com/2010/10/11/numberplay-the-ultimate-answer/

Abstract
This informal paper presents a circle-and-line method for constructing the trajectory of a projectile 

bouncing up and down a ramp. The method is presented as a series of collaborative discoveries.

Latent structure is master of obvious structure. —Heraclitus

1    A Second Reflection
Raise a cannon halfway to vertical and fire. The cannonball flies over to a small trampoline, 

bounces, and retraces its path back to the cannon.

    1) What is the angle of the trampoline?

    2) What other angle will work?

Solution: A trampoline at 45° will return the ball to the cannon, clearly, but half that angle will 

also work: the ball will fly over to the trampoline, bounce vertically, then retrace its path back to 

the cannon.

45° ?

45° 22.5°
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2    Seeking Structure
It was clear that 45° and 22.5° were not the only solutions—with a long enough trampoline, 

infinitely many angles would work. But what was the underlying pattern?

The Method of Apollonius
A parabola’s envelope of tangent lines can be created by taking 

a sloping line segment, mirroring it, dividing each by any 

number of equal segments, then connecting as follows.

The Nine-Dot Problem
Nine dots arranged in a grid can be connected with a series of 

connected straight line segments as follows—the iconic 

outside-box solution.

In an ongoing Numberplay discussion, the team of Dr. W, Marco Moriconi, Tudor, Hans Chen, 

Pummy Kalsi, and Pradeep Mutalik settled on the fire-from-ramp approach and computed a 

number of angles and distances between bounces. Nick Baxter created the corresponding images 

of the flight paths. Peter Norvig, director of research at Google, created a useful projectile/ramp 

simulation tool.

.http://norvig.com/inclined_plane.html

It would seem that the underlying structure would have to include the following tangent lines. 

What form would these lines take if extended?
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3    Apollonius Sideways
Extended tangent lines created what appeared to be rotated Apollonian structures.

Key to the structures were the sideways V shapes, which could 

be divided into 2, 3, 4, 5 segments to create tangents for 2, 3, 4, 

5 bounces. How could these be derived?

For ideas I turned to Nick Baxter, who suggested throwing the problem to geometers. George Hart 

came to mind. We phrased the challenge this way:

If this approach actually worked—this remained to be proven—it would be a new way to think 

about the path of a projectile on an inclined plane. What the logic behind these structures?

What Angles?
Place a cannon directly on a ramp. What launch and ramp angle 

will cause a ball to bounce up the ramp n times before reversing 

direction?



SCIENCE |  189

3    A Deeper Structure
-

fully worked out (there are several ways to construct bounce-level detail). I find circle construc-

tions practical, precise, and aesthetically pleasing.

This was the deeper structure I had been seeking. The basic idea could be used to easily and accu-

rately construct not only the launch/ramp angles to generate any number of bounces, but also 

estimate the number of bounces for any launch/ramp configuration, accurately determine the path 

of a ball bouncing down a ramp, and determine the trajectory of a ball fired in any direction based 

on a single vertical launch. The reflection was complete.
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Appendix 1: George Hart’s Solution
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Appendix 2: Proof

We seek to prove that the intersection points between the 

construction shown in black and a line bisecting the angle at the 

bottom left vertex (in blue) are spaced quadratically with the 

zero point at the single perpendicular intersection.

Let N be number of subdivisions of the bounding lines such that the subdivision points are equidis-

tant and N is one more than the number of lines between these subdivision vertices. In the above 

vertex (down to arbitrary scale factor) such that the bottom left vertex is 0 and the end of each 

Consider, now, a triangle bounded by the two bounding lines 

distance from the vertex to the intersection with the diagonal 

as Yx. If the angle at the vertex between the two bounding 

sine angle formula as 

Since we care only about the relative ratios of Yi we can ignore the constant multiplicative factor 

perpendicular intersection point. We can easily see that this intersection occurs for a line with

exactly as desired.
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The Dynamics of Spinning Polyominoes 
George Bell     Mar 21st 2018     gibell@comcast.net 

 
Q: Which two pentominoes are indistinguishable as rigid, rotating bodies? 

A: Two rigid bodies have the same rotational dynamics if they have the same 
.  Therefore, to answer this question, we need to calculate the 

 for each of the 12 pentominoes (the principal moments of inertia are the 
eigenvalues of this matrix).  The pentominoes are 2D objects obtained by joining 5 squares 
along their edges in all possible ways.  As spinning objects, we consider that each pentomino is 
composed of five 1x1 squares of mass 1 and thickness  as shown in Figure 1. 

 

 

 

 

 

Figure 1: Polyomino building blocks. 

As we will see, we can use any h between 0 and 1 and our results do not change qualitatively.  
We do not even have to build our pentominoes from squares of height , we can use any object 
with square symmetry, or we could use circles or spheres (connected at points). 

All moment of inertia tensors we will calculate are taken about the center of mass.  The 
moment of inertia tensor  for an object composed of  squares is given by the sum of the 
moment of inertia tensors of the component squares,  plus the moment of inertia tensor  
of the squares as point masses displaced from the center of gravity [1].  The moment of inertia 
tensor for the rectangular solid in Figure 1 is given by 

 

The limiting cases  (thin plate) and  (cubes) are interesting special cases.  In the 
cube case  is 1/6 times the identity matrix. 

Now we consider the contribution from the squares as point masses displaced from the center 
of gravity.  As an example take the “P” pentomino (Figure 2). 

1 

Center of mass 

h 1 
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Figure 2: The P-pentomino. 

The 5 squares have their centers at coordinates .  The center of 
mass of these 5 point masses is at , so subtracting this from each coordinate we obtain 
a set of 5 point masses with center of mass at the origin: 

  For a set of unit point masses in 
2D at coordinates  the moment of inertia tensor about the origin is given by 

 

where 

 

Calculating this for the P-pentomino, we get the total moment of inertia tensor about the 
center of gravity (0,0) 

 

The principle moments of inertia are the eigenvalues of , these are always real and non-
negative.  Because  is diagonal, it only affects the magnitude of the eigenvalues.  We calculate 
the eigenvalues of as 4, 3 and 1 with corresponding unit eigenvectors ,  
and .  We now adopt the convention of displaying the pentomino with the two 
principal axes beginning at the center of mass, with length proportional to the magnitude of the 
eigenvector.  The largest eigenvalue is always aligned with the z-axis and is not shown in these 
(2D) diagrams. 
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Figure 3: The P-pentomino, with principle axes of inertia shown at the center of mass. 

We now repeat these calculations for all 12 pentominoes, with results shown in Table 1.  This 
table shows the polyominoes sorted by decreasing principal moments of inertia.  These 
eigenvalues are those of the matrix , to obtain the eigenvalues of  we add  to the largest 
eigenvalue and  to the other two.  From here on out we assume  (2D 
polyominoes). 

Name    
I 10 10 0 
L 7.6  7.031099  0.568901 
N 6.4 5.890725 0.509275 
V 6.4 5 1.4 
Z 6   5.236068  0.763932 
Y 6   5.236068  0.763932 
W 5.6 5 0.6 
U 5.2 4 1.2 
T 5.2 3.2 2 
F 4.8  3.477033 1.322967 
P 4 3 1 
X 4 2 2 

Table 1: The principal moments of inertia of the 12 pentominoes (same order as in Figure 4). 



SCIENCE |  195

Figure 4: The 12 pentominoes oriented with principal axes aligned with the coordinate axes. 

We see in Table 1 that there are exactly two pentominoes, Y and Z, which have identical 
principal moments of inertia.  These will rotate exactly the same as freely spinning objects.  If 
we rotate each so that their principal axes correspond, we obtain Figure 5a.  We note that the Z 
pentomino has rotational symmetry, while the Y pentomino has no symmetry. 

 

 

 

 

 

 

 

Figure 5: The Z and Y pentominoes with principle axes aligned and identical (left).  The two 
hexominoes with identical moments of inertia. 
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We have repeated these calculations through octominoes (n=8).  There are exactly two 
hexominoes with the same principal moments of inertia (Figure 5b).  These can be obtained 
from the Z and Y pentominoes by adding a square to each. 

 

 

 

 

 

 

 

Figure 6: Three heptominoes (n=7) all sharing the same three principal moments of inertia. 

Beyond n=6, polyominoes sharing the same principal moments of inertia are common.  Figure 6 
shows  septominoes (n=7) with the same principal moments of inertia.  Figure 7 shows 
octominoes which all share the same three principal moments of inertia: ! 

 

 

 

 

 

 

 

 

Figure 7: Six octominoes (n=8) all sharing the same principal moments of inertia. 

[1] H. Goldstein, , Chapter 5, 1980 Addison-Wesley 
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Introducing The 
® 

or PiTOP
® 

 
 

 
 

 

Kenneth Brecher 
Departments of Astronomy and Physics 

Boston University 
Boston, MA 02215, U.S.A. 
Email: brecher@bu.edu 

PiTOP® Website: http://www.thepitop.com 
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Why Pi at G4G13? 

(Martin Gardner caricature by Ken Fallin, 2010) 
 

262,537,412,640,768,744.0 
 

Martin Gardner demonstrated a playful interest in Pi. His 
April 1975 column in Scientific American entitled “Six 
Sensational Discoveries” reported that in 1974, 
Ramanajun’s 1913 conjecture shown above had been proven 
to be an exact result!!! 
 

What is the PiTOP®? 
 
 

It is a physical embodiment of the mathematical constant . 
This disk, has a radius of r = 1” and thickness t = 1/ ” ~ .32”. 
When made in brass, it weighs ~ 4.8 ounces. It displays the 
first 109 digits of Pi in a spiral pattern on one side. (The 
pattern was designed in collaboration with Kaz Brecher.)  
 
What is the point of the PiTOP®? 
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It is a tactile hand sized stress reliever. 

It is an elegant paperweight. 

It is a beautiful March 14 Pi Day gift. 

It is a personal fidget device. 

And it also symbolizes profit in economics! 

Sound and Light Effects 
 

The PiTOP® was designed to optimize its dynamical 
properties based on a variety of experiments that I carried 
out with many prototypes. As the PiTOP® spins and 
precesses, it produces a hypnotic sound and light display. 
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PiTOP® Dynamics 
 
After spinning it on its edge like a coin, the PiTOP® loses 
rotational energy due to friction. As the angle  that it 
makes with the horizontal decreases with time, its precession 
frequency  increases, tending toward a “finite time 
singularity”. 

 

 
 

The above data was collected from time-lapse photographic 
measurements of the spin of a PiTOP prototype that I sent 
for analysis to Professor Rod Cross at the University of 
Sydney, (cf. “Effects of Rolling Friction on a Spinning Coin 
or Disk”, European Journal of Physics, 39, #3, 5, 2018). 
 

Cubing the PiTOP® 
 
Although one cannot square the circle in a finite number of 
steps using only a compass and a straightedge, the PiTOP® 
automatically cubes a right circular cylinder of radius r 
since it has volume VPiTOP = r2t = r2r/  = r3 = Vcube. 



SCIENCE |  201

 

 
 

The PiTOP® and The PhiTOP® 
 
 

 
 

The PhiTOP was previously introduced at 
G4G12. They can both be found at: 
 

https://www.etsy.com/shop/SiriusEnigmas 
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G4G13 Exchange Book
Legacy, Puzzles, & Science

Volume 2

Welcome to this glimpse of some of the fun and excitement of the 

13th Gathering for Gardner (G4G13) in Atlanta, Georgia, April 11-15, 

2018. Here you will find the program of events, and 78 papers that 

are write-ups by many of the presenters who made this event so 

vibrant. The subjects are far-ranging, all touching on subjects that 

fascinated Martin Gardner. Placed into sections on Art, Games, 

Math, and Magic... these papers describe puzzles, games, illusions, 

magic, and curiosities both mathematical and otherwise.

- excerpt from the Preface by Doris Schattschneider
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