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1. The Broken Calculator

A calculator is missing all of its keys but sin, cos, tan, SHIFT1 and 1 That is to say: the inverse trigono-
metric functions are also available.=. It initially starts with 0 on screen. Show that the calculator can

produce any positive rational number.

Some functions

By applying one of the three inverse functions to a number (assuming
it is in the relevant domain) and one of the direct functions to the
result, we end up with a (generally different) number. It’s worth
exploring some of the things we can do with such compositions.

A useful composition would be one that took a number greater than
one and returned its inverse, so that the output is in the domain of all
three inverse functions.

This can be arranged by considering a right-angled triangle as
pictured, with q > p. arctan

(
q
p

)
gives angle Q. The cosine of Q is

p√
p2+q2 , and the arcsine of this is angle P. Finally, tan (P ) = p

q , the
reciprocal of the original argument.

Figure 1: A triangle
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Definition: Let R(x) = tan (arcsin (cos (arctan (x)))) = 1
x .

Given a number smaller than one, where do the various composi-
tions leave us? Ignoring the self-inverse compositions, and assuming
p < q, we have:

• sin
(

arccos
(

p
q

))
=
√

q2−p2

q

• cos
(

arcsin
(

p
q

))
=
√

q2−p2

q

• tan
(

arccos
(

p
q

))
=
√

q2−p2

p

• cos
(

arctan
(

p
q

))
= q√

p2+q2

• tan
(

arcsin
(

p
q

))
= p√

q2−p2

• sin
(

arctan
(

p
q

))
= p√

p2+q2

I’ve arranged these in three pairs, such that each element of a pair
is the other’s inverse over a domain of at least 0 ≤ p

q ≤ 1.

The first pair of functions aren’t especially interesting, but either
of the last two pairs can be used to great effect. I’ll pick the last pair,
and give them names.

Definition: Let Ts(x) = tan (arcsin (x)).

Definition: Let St(x) = sin (arctan (x)).

With these two functions, and R(x) from before, we can solve the
puzzle.

A solution

Proposition: Any positive rational number can be produced by
applying a composition of the functions sin, cos, tan and their usual
restricted inverses to 0.

Remark: cos(0) = 1, so 1 can be produced.

Demonstration: Suppose we wish to produce a rational number,
r = p

q , with p and q coprime positive integers.

If p > q, then r can be produced if q
p can; therefore, we need only

show that all positive rational numbers smaller than 1 can be reached.

Assuming r < 1, it can be reached (by way of St) if Ts(r) =
p√

q2−p2
can.
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This is not (generally) a rational number, but it is the square root
of a rational number. Its numerator is smaller than q, by supposition;
its denominator is also smaller than q because of geometry and/or
algebra2. 2 You can see this by considering a

right-angled triangle with hypotenuse
q and a leg of p. The second leg is√

q2 − p2, which is smaller than q.
Remark: The key point here is that Ts

(
p
q

)
is a fraction with a

numerator and denominator both of which are square roots of integers,
and both strictly smaller than q.

Applying R if needed, this means p
q can be generated from some

number of the form
√

a√
b
with 1 ≤ a ≤ b < q, with a, b and q all

integers3. 3 Regarding a ≤ b: equality holds here
iff q = 1√

2
.

Repeating the process leads to still smaller elements of the fraction;
a decreasing sequence of integers bounded inclusively from below by 1
must eventually reach 1.

Since we know we can produce 1, all positive rational numbers can
be produced �.

An example

Suppose we want to produce r = 4
3 , everyone’s favourite triangle-

related fraction.

• 4
3 can be produced if 3

4 can; r = R
(3

4
)
.

• 3
4 can be produced if 3√

7 can: r = R
(

St

(
3√
7

))
.

• 3√
7 can be produced if

√
7

3 can: r = R
(

St

(
R
(√

7
3

)))
.

•
√

7
3 can be produced if

√
7√
2 can: r = R

(
St

(
R
(

St

(√
7√
2

))))
.

•
√

7√
2 can be produced if

√
2√
7 can: r = R

(
St

(
R
(

St

(
R
(√

2√
7

)))))
.

•
√

2√
7 can be produced if

√
2√
5 can: r = R

(
St

(
R
(

St

(
R
(

St

(√
2√
5

))))))
.

•
√

2√
5 can be produced if

√
2√
3 can: r = R

(
St

(
R
(

St

(
R
(

St

(
St

(√
2√
3

)))))))
.

•
√

2√
3 can be produced if

√
2

1 can: r = R
(

St

(
R
(

St

(
R
(

St

(
St

(
St

(√
2

1

))))))))
.

•
√

2
1 can be produced if 1√

2 can: r = R
(

St

(
R
(

St

(
R
(

St

(
St

(
St

(
R
(

1√
2

)))))))))
.

• 1√
2 can be produced if 1

1 can: r = R
(
St

(
R
(
St

(
R
(
St

(
St

(
St

(
R
(
St

(1
1
))))))))))

.
• 1 = arccos(0), so r = R (St (R (St (R (St (St (St (R (St (arccos(0))))))))))).

Therefore 4
3 can be produced.

A connection

“Why are you writing all this, Colin? It’s a diverting enough puzzle,
but. . . why?”
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I’m writing about it because it gave me such a lovely revelation, I
nearly jumped out of the bath.

Suppose we write our target fraction as r =
√

P√
Q
, with P = p2 and

Q = q2. Then our algorithm for working backwards to show 1 can be
produced from r (and, hence, by way of inverses, r from 1) is:

While Q 6= P :

• If Q < P , swap P and Q (this is the effect of R
(

q
p

)
).

• Let Q = Q− P (this is the effect of Ts

(
p
q

)
).

This is Euclid’s algorithm for finding the greatest common factor of
P and Q! Since, by supposition, P and Q are coprime, their GCF is
1. Therefore, 1 can be produced from r and hence r can be produced
from 1 �.


