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PROMOTIONAL CORNER: Have you an 

event, a workshop, a website, some 

materials you would like to share with the 

world? Let me know! If the work is about 

deep and joyous and real mathematical 

doing I would be delighted to mention it 

here. 

*** 

Looking for an absorbing math read 

about academia, coffee, blueberry 

muffins, love, and more? Check out Gary 

Earnest Davis’s novel Coffee, Love and 

Matrix Algebra at http://www.coffee-

love-matrixalgebra.com/. (I may be a 

little biased in my review of this piece 

because of page 29!)  
 

 
 

 

PUZZLER 1:   Cover a rubber ball with 

dots, lots of dots. Color some dots azure 

(A), some dots blush (B), and some dots 

crimson (C). Now draw lots of non-

intersecting lines connecting pairs of dots 

to make spherical triangles. Completely 

cover the surface with these triangles. 

(Make sure every surface region is 

bounded by three edges and three 

vertices.)  

 

Juju looks at the design she made this 

way on a rubber ball and notices that one 

of her triangles has corners one of each 

color. Explain why Juju is sure to have at 

least one more ABC triangle on her ball.  
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PUZZLER 2:   It is possible to divide a  

9 9  grid of squares into eighteen 

triangles of equal area, each with a 

vertex at an intersection point.  

 
Is it possible to divide the 9 9  grid of 

squares into an odd number of triangles 

of equal area (with vertices at grid 

points)? 
 

For each counting number N  it is 

possible to divide an N N  grid of 

squares into an even number of triangles 

of equal area, each with vertices at 

intersection points. (Two triangles, for 

example!) Is there any value of N  for 

which an N N  grid of squares can be 

so subdivided into an odd number of 

triangles?  
 

 
SPERNER’S LEMMA 

In 1928 German mathematician Emanuel 

Sperner developed the following delightful 

result: 
 

Suppose a polygon is subdivided into 

triangles (making sure that each pair of 

neighboring triangles meet along an entire  

edge length). If we randomly label the 

vertices of all the triangles A, B, and C, then 

the count of outside edges labeled AB has 

the same parity as the count of triangles 

fully labeled ABC. (So if there are an odd 

number of outer AB edges, then there are 

an odd number of ABC triangles. If there are 

an even number of outer AB edges, then 

there are an even number of ABC triangles.) 

 

 
This decagon has 3  outside AB 

edges and 5  interior ABC triangles. 

Both of these counts is odd. 
 

The proof of this result is lovely too. 
 

PROOF: Draw arrows inside each triangle 

pointing to any AB edges. Let’s examine 

how many arrows there are. 
 

Counting by Triangles: Every ABC triangle 

contains one arrow. All other triangles (CCC 

triangles, AAB triangles, ACC triangles, and 

so on) contain either zero or two arrows.  

It follows that the number of arrows has the 

same parity as the number of ABC triangles. 

(Thus if one count is odd or is even, the 

other is the same.) 
 

Counting by Edges: Each outside AB edge 

has one arrow. Each inside AB edge has two 

arrows. All other edges have no arrows. So 

the number of arrows has the same parity 

as the number of outside AB edges.   
 

We see that the number of arrows, the 

number of ABC triangles, and the number of 

outside AB edges all have the same parity.  
 

Question 1: What can you say about the 

number of outside BC edges and the 

number of outside AC edges? 
 

Question 2: Can you now prove that the 

number of ABC triangles in puzzle 1 has 

to be even? 
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DIVIDING SQUARES INTO TRIANGLES OF 

EQUAL AREA 
 

Let me give puzzle 2 away: 
 

It is impossible to subdivide an N N  grid 

of squares into an odd number of triangles 

of equal area (with vertices at grid points). 
 

Proving this in full generality is surprisingly 

hard!  
 

Let’s assume that our grid of squares is 

placed on a set of coordinate axes so that 

its vertices have coordinates  0,0  , 

 , 0N  ,  ,N N  , and  0, N  . 

 

 
 

Suppose this square is divided into k   

triangles of equal area 

2
N

k
 . 

 

Since the vertices of each triangle lie on grid 

points, each vertex has integer coordinates. 

Also, if a triangle has vertices  1 1,x y  , 

 2 2,x y , and  3 3,x y , then its area is 

given by the shoelace formula: 

1 2 2 3 3 1 1 2 2 3 3 1

1
| |

2
x y x y x y y x y x y x     .  

(See the 2014 COOL MATH ESSAY at 

http://www.jamestanton.com/?p=1072.) 

This area equals 
2 /N k  for each triangle. 

Our job is to prove that k  has to be even. 

 

 

 

 

EASIER CASE: If N is an odd integer… 
 

Let’s give each triangle vertex  , yx a label 

according to the following possibilities: 
 

x  even, y  even:  Label it A. 

x  odd,  y   even:  Label it B. 

   y  odd:  Label it C  . 

 

 
With this scheme, any vertex of the top 

edge (of the form  ,x N  ) has label C. 

The point  0,0   has label A and any vertex 

on the left edge has label A or C. The point 

 , 0N  has label B, and all points on the 

bottom edge have label A or B. All vertices 

on the right edge have label B or C. Interior 

vertices can be A, B, or C. 
 

Notice that all the outside AB edges of this 

polygon, divided into triangles, lie on the 

bottom edge. The number of these outside 

AB edges must be odd. (In reading from left 

to right along this bottom edge we start 

with A and end with B. Each AB edge 

“switches” the label and so there must be 
an odd number of switches.)  
 

By Sperner’s result, there is at least one 

ABC triangle in our diagram. 
 

Suppose the vertex labeled A in this special 

triangle has coordinates  1 1,x y   (both 

even), the vertex labeled B has coordinates 

 2 2,x y   ( 2x  odd, 2y  even), and the vertex 

labeled C coordinate  3 3,x y  ( 3y   odd).  
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We have: 
 

2

1 2 2 3 3 1

1 2 2 3 3 1

1
|

2

|

N
x y x y x y

k

y x y x y x

  

  
 

 

Of the six terms on the right, all are even 

except 2 3x y . Thus the right side is a fraction 

of the form:
2

odd
.  Since N   is odd, it 

better be the case that k   is even.  

 

 

HARDER CASE: If N is an even integer… 
 

If N  is even we can write 2a
N m  for 

some 1a    and some odd integer m . 
 

We’ll now follow the same proof as before, 

but we’ll be more explicit about the powers 
of two that appear in all our integers.  
 

Give each triangle vertex  , yx a label as 

follows:  
 

Write 2bx p  with p  odd and 0b   , 

and 2cy q  with q  odd and 0c  . (Or if 

0x   , a number highly divisible by two, 

declare b    , an infinitely large number, 

and interpret the role of x  appropriately in 

the remainder of this proof. Ditto if 0y   .)  

 

Label  ,x y  : 

    A if b a   and c a  . 

    B if at least one of b  or c   is a  , and  

b c  . 

    C if at least one of b  or c   is a  , and  

b c  . 

 

NOTE: For the case with N  an odd number 

we have 0a   , and these labels match the 

labels we assigned before. 

 

Also note that the condition for B forces 

a b  and the condition for C forces a c .   

 

The vertices that lie on the corners and the 

edges of the square will have labels almost 

the same as before: 

 
We see again that there must be an odd 

count of outside AB edges, and so our 

diagram contains at least one ABC triangle. 
 

Suppose the vertex labeled A in this triangle 

has coordinates  1 1,x y , the vertex labeled 

B has coordinates  2 2,x y  , and the vertex 

labeled C coordinate  3 3,x y . (Notice that 

2x  cannot be zero, and 3y   cannot be 

zero.) We have: 
2

1 2 2 3 3 1

1 2 2 3 3 1

1
|

2

|

N
x y x y x y

k

y x y x y x

  

  
 

That is,  
 

1 2 2 3 3 1 1 2 2 3 3 1| |x y x y x y y x y x y x      

 

is an integer of the form 

2 1 22 a
m

k



  with m  

odd. If k  is odd, then this integer is divisible 

by 
2 12 a

 . We’ll show that this is not 

possible, forcing us to conclude that k is 

even. 
 

Writing 1

1 12b
x p , 3

3 32c
y q  ,  and so on, 

we have: 
 

1b a         2 2c b           3 3b c  

1c a         2a b           3a c  
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Now:  
 

3 21 2 2

1 2 1 2 1 2 1 22 2 2c bb c a b
x y p q p q p q

      

2 3

2 3 2 32b c
x y p q

   

3 1 3 3 2

3 1 3 1 3 1 3 12 2 2b c c a c b
x y p q p q p q

       

2 32 1

1 2 2 1 2 12 2b cb c
y x p q p q

    

3 2 2 3

2 3 3 2 3 22 2b c b c
y x p q p q

     

1 3 2 3

3 1 1 3 1 32 2b c b c
y x p q p q

     

 

We have that each term has 2 32b c
 as a 

factor, with this being that largest power of 

two that divides 2 3x y  . This means that 

1 2 2 3 3 1 1 2 2 3 3 1| |x y x y x y y x y x y x      

is an integer divisible by highest power of 

two 2 32b c
 : 

 

2 3

1 2 2 3 3 1 1 2 2 3 3 1| |

2b c

x y x y x y y x y x y x

odd


    

 
 

 

But 2 3 22 2 2b c a a a    . This integer can’t 

be of the form

2 1 22 a
m

k



 if k  is odd. 

 

That’s it!  

 

VERY HARD CHALLENGE: Prove that it is 

impossible to divide a square of any size 

into an odd number of triangles of the 

same area. (The vertices of the triangles 

can now lie anywhere within the square: 

they need not have integer coordinates!)  

 

Comment: Our proof for puzzle 2 makes use 

of the highest powers of two that divide 

various integers. By using a “2-adic 

valuation” one can extend our approach to 

establish the claim made in the very hard 

challenge! (Or can you come up with a 

simple proof that does not make use of 

advanced mathematical tools? If you do, let 

me know!) 

 

 

 

 

 
 

RESEARCH CORNER: 
 

Show that one can divide a 9 9  square 

into 2 , 6 , 18 , 54 , and 162  triangles of 

equal area and with vertices having 

integer coordinates. Are any other counts 

of triangles possible? 
 

For each N  what are the possible counts 

of triangles of equal area, with vertices at 

integer points, subdividing an N N  

grid of squares? 

 

MORE RESEARCH: 

Care to subdivide an equilateral triangle 

into triangles of equal area? Into 

quadrilaterals of equal area? Cubes into 

tetrahedra of equal volume?  

(Oh heavens!)  
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