
“The JRMF really gets it right. Usually the best parts of mathematics are kept away from 

the public, as if you needed to be a mathematician to get to the fun stuff! It’s refreshing to 

see a festival that brings this stuff to light, and in such a relaxed atmosphere. If you’re lucky 

enough to have a JRMF near you, don’t miss it! It’s the best math party around.” 

 – Vi Hart, Mathemusician, youtube.com/user/ViHart
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Squaring  Puzzles

Cartouche Puzzles

Digit Sums
www.itsokaytobesmart.com

www.MathPickle.com

www.MathPickle.comSquareable
Numbers

thesmartkitchenblog.com

Hugs & Kisses 

Trapezoidal
Numbers

Switching 
Light Bulbs 

Festival activities are designed to open doors to higher mathematics  

for students in grades K–12. Visit www.JRMF.org for more information  

about Julia Robinson Mathematics Festivals.

Compiled by Nancy Blachman, Founder, Julia Robinson Mathematics Festival.
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P R E S E N T S

For more activities, visit:  www.CelebrationOfMind.org
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Problem 5: Show how you can get calculator 3 to display any positive integer. 

Three More Wordless Puzzles 

Squareable Numbers 

by Daniel Finkel and Katherine Cook,  Math for Love 

The number n is “squareable” if it is possible to build a square out of  n  smaller squares 
(of any size) with no leftover space. The squares need not be the same size. For example, 
1, 9, and 12 are all squareable, since those numbers of squares can fit together to form 
another square. 

 

Is there a simple way to tell if a number is squareable or not?  

Which numbers from 1 to 30 are squareable? Experiment.  Every time you come up with 
a way to break a square into some number of squares, circle that number.  

1        2        3        4        5        6        7        8        9        10       11        12        13       14       15  

16     17      18      19       20     21      22      23      24      25      26        27       28      29       30 

Is there a pattern? Can you predict squareability in general? 

Here’s why Dr. Finkel proposed this problem to Gary Antonick, who published it in the New 

York Time Numberplay online blog,  wordplay.blogs.nytimes.com/2013/04/08/squareable . 

I think this puzzle is amazing because it’s compelling right away, and you can 

work on it without worrying too much about wrong answers. If you’re trying to 

show 19 is squareable and can’t, maybe you’ll accidentally show 10 is squarable on 

the way. (Of course, neither of those numbers is necessarily squareable. No 

spoilers here.) It’s great to be able to experiment with a puzzle in an environment 

where virtually everything you do gives you some positive gains.  

 

I also like it because the willy-nilly approach most people start with eventually 

leads to a more strategic approach, and it takes a combination of deeper 

strategies to solve the problem. I also like it because just about anyone can get 

started on it, and make some serious headway —you don’t need a sophisticated 

math background. 

Find this and other Math for Love puzzles online at  mathforlove.com/lesson-plan/ . 
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Squaring Puzzles 
by Gord Hamilton, Math Pickle 

 

These abstract squaring puzzles give students addition and subtraction practice with numbers 

usually below 100. They also link these numerical activities to geometry.  What a beautiful way 

to practice subtraction! —Gord Hamilton, Founder of Math Pickle. 

 

The number in each square represents the length of a side of that square. Determine the length 

of a side of all the squares in this rectangle and the lengths of the sides of the rectangle. 

 

 

 

Find more square and subtracting puzzles here: 

mathpickle.com/project/squaringthesquare/. 
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Here’s a more challenging puzzle. As in the previous puzzle, the number in each square 

represents the length of the sides of that square. Determine the dimensions of all the squares in 

this rectangle and the lengths of the sides of the rectangle. 
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Algebra on Squares 
by Gord Hamilton, Math Pickle 

mathpickle.com/project/algebraonrectangles 
 

Imagine all the interior 

rectangles are squares.  

The letter in each square 

represents the length of  

a side of that square.  

 

Determine the length of a side of 

each square in this rectangle and 

write it inside the square.  

 

Also determine the lengths  

of the sides of the rectangle. 

 
 

Find more of these algebra 

puzzles on the MathPickle link 

above. 
 

 

If you want even more of a 

challenge, try the following 

puzzle.  
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Trapezoidal Numbers

Compute
1. What is the sum 3 + 4 + 5?

2. What is the sum 4 + 5 + 6 + 7 + 8?

3. What is the sum 5 + 6 + ... + 80 + 81?

All of the results of these computations are called trapezoidal numbers, because you can

draw a trapezoid that illustrates the answer to problem 1 with dots or blocks like this:

where each row has one more dot than the row before.  So for instance 13 is trapezoidal

because it is equal to 6 + 7.  A trapezoidal number has to have at least two rows.

Patterns
4. What numbers can be written as 2-row trapezoidal numbers, like 13?

5. What numbers can be written as 3-row trapezoidal numbers, like 3 + 4 + 5?

6. What numbers can be written as 4-row trapezoidal numbers?

7. What about 5-row, 6-row, and so on?  Can you explain a general rule, so that we

can tell whether 192 is a 12-row trapezoidal number? 

8. Can you name a large number that is not trapezoidal, no matter what number of

rows you try?  How do you know it can't be trapezoidal?

9. Can you name a large number that is trapezoidal in only one way?  How do you

know?

10. How many trapezoidal representations does 100 have?  Why?  How about 1000?

11. How many trapezoidal representations does 221 have?  Why?

12. How can you determine how many trapezoidal representations a number has?

13. What if we allow negative numbers, like –2 + –1 + 0 + 1 + 2 + 3 + 4 + 5, in a

trapezoidal representation?  What if we allow “staircases” like 3 + 7 + 11?

Find more Julia Robinson Mathematics Festival problem sets at jrmf.org/problems.php.
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Find more MathPickle Cartouche puzzles online at mathpickle.com/project/cartouche/.
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Find   more   Julia   Robinson   Mathematics   Festival   problem   sets   at    jrmf.org/problems.php . 
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Switching Light Bulbs

A long hallway has 1000 light bulbs with pull strings, numbered 1 through 1000.  If the

light bulb is on, then pulling the string will turn it off.  If the light bulb is off, then pulling

the string will turn it on.  Initially, all the bulbs are off.

At one end of the hallway, 1000 people numbered 1 through 1000 wait.  Each person,

when they walk down the hallway, will pull the string of every light bulb whose number

is a multiple of theirs.  So, for example, person 1 will pull every string; person 2 will pull

the strings of bulb number 2, 4, 6, 8, 10, …, and person 17 will pull the strings of bulb

number 17, 34, 51, 68, … .

For each situation below, which light bulbs are on after all the indicated people are done

walking?

1. Everyone

2. The evens, or in other words, all the people whose numbers are even.

3. The odds

4. The primes

5. The perfect squares

6. The multiples of 3

7. The perfect cubes

8. The people 1 more than a multiple of 4.

9. The people 2 more than a multiple of 4 (that is, the evens not divisible by 4).

10. Any other interesting sets you’d like to consider?

11. Given the set of people who walked, what is a general strategy for figuring out

which light bulbs are turned on?
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For each situation below, which people should walk in order for the indicated sets of light

bulbs to end up being the only ones turned on?  

12. All the bulbs.

13. The odds, or in other words, all the light bulbs whose numbers are odd.

14. The evens

15. The primes

16. The perfect squares

17. The perfect cubes

18. The multiples of 3

19. The multiples of 4

20. The multiples of 6

21. Any other interesting sets you’d like to consider?

22. Given the set of light bulbs that are turned on, what is a general strategy for

figuring out which people walked?

23. For any set of light bulbs, does there necessarily exist a set of people who can

walk such that the given set of light bulbs ends up being the only set turned on?  If

so, prove it.  If not, describe the sets of light bulbs that are impossible.

24. Suppose that there are still 1000 people, but there are more than 1000 light bulbs.

Not knowing which people walked, but only knowing which of the first 1000 light

bulbs are turned on, what can you predict about which of the bulbs beyond #1000

are turned on?

Thanks to Stan Wagon’s Macalester problem of the week for the idea behind this

extension of the famous locker problem.  Thanks to Glenn Trewitt and Car Talk for the

idea of using light bulbs instead of lockers.

Find more Julia Robinson Mathematics Festival problem sets at jrmf.org/problems.php.
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Casting Out Nines

The “digital root” of a number is the result you get if you add up its digits, and then add

up the digits of that result, and so on, until you end up with a single digit.  For instance,

the digital root of 44689 is computed by finding that 4 + 4 + 6 + 8 + 9 = 31, and then

3 + 1 = 4 gives you a single-digit answer.  

1. Let's look at two numbers that add up to 44689, such as 31847 and 12842.  What

relationship can you find among the digital roots of these numbers?

2. What about two numbers that subtract to make 44689, like 83491 and 38802?  Is

there a relationship among their digital roots?  What can you do with 100000 and

55311?

3. What about two numbers that multiply to make 44689, like 67 and 667?  Or two

other numbers that multiply to make 44689, like 23 and 1943?

4. The process of taking the digital root is called “Casting out nines” for a reason:

what you're actually doing in computing the digital root is another way of

determining the remainder when you divide by 9.  In other words, you keep

throwing away multiples of 9 until you're eventually left with a number smaller

than 9.  Well, that's not quite true: why not?

5. In the original example of 44689, we obtained 31 after the first step.  Let's see the

9s disappearing as we go from 31 to 3 + 1: 31 means 3 ! 10 + 1 which is the same

as 3 ! 9 + 3 ! 1 + 1, so after throwing away the 9s we have 3 ! 1 + 1, which

finally is 3 + 1.  Can you give a similar explanation for how 44689 turns into 4 +

4 + 6 + 8 + 9 after throwing away a lot of 9s? 

6. One of the major uses of casting out nines is to check arithmetic quickly.  If your

calculation (like in the first few problems here) doesn't match up, then you know

there was an arithmetic mistake.  Which of the following can be proved wrong by

casting out nines?  Are the other ones actually correct?

a)  1234 + 5678 = 6812

b)  12345 – 9876 = 2469

c)  10101 – 2468 = 7623

d)  1234 ! 5678 = 7006652

e)  4321 ! 8765 = 37783565

f)  345 !  543 = 196335

g)  217 = 130072 (warning!  How should you handle exponents?  

Think about this very carefully!)
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7. On the other hand, certain kinds of mistakes will never be found by casting out

nines.  Can you give some examples of these? Examples that might be common?

8. Why is this process a bad idea for division when it works so well for addition,

subtraction, and multiplication?  Give an example where casting out nines seems

to be “wrong” even though the answer is correct.

9. On the other hand, you can use casting out nines to check division problems by

rewriting them as multiplication and addition.  How would you rewrite “23894

divided by 82 is 291 with a remainder of 32” using only multiplication and

addition, so you could then check it by casting out nines?

10. Another way to think about casting out nines is that as you add 9 to a number, you

increase the tens digit by 1, and decrease the ones digit by 1, so adding 9 won't

change the digital root.  What is the flaw in this logic?  Can you repair it?

11. Casting out nines has some other interesting applications as well.  What is the

digital root of 3726125?  Can you use that information to explain why 3726125 is

not a perfect square?

12. You can also cast out elevens instead of nines.  Start with the rightmost digit, and

alternately add and subtract.  So with 44689 you'd take 9 – 8 + 6 – 4 + 4 = 7.  If

you end up with a negative number, remember you're casting out elevens, so just

add 11 as many times as you'd like.  Can you explain why this process works?

13. There are some common mistakes that you wouldn't be able to catch with casting

out nines, but you can catch by using casting out elevens.  Give at least one

example.

14. There's a magic trick that is most often done using a calculator.  Pass the

calculator around the room, and each person types in one digit and presses the

multiplication key.  After a while, the calculator screen is full of digits.  The

person holding the calculator at that point eliminates any one digit 1 through 9

(not 0), and then takes the remaining digits and writes them in any order.  For

example, they might write 3004129.  Then, a mathematician almost instantly says

what the missing digit is.  Which digit is missing?  How could the mathematician

know?  But sometimes the mathematician is wrong.  Why?

15. What is the digital root of 44444444?  Can you determine how many times you will

have to sum the digits before obtaining a single digit answer?



NRICH promotes the learning of 
mathematics through problem solving. 
NRICH provides engaging problems, 
linked to the curriculum, with support 
for teachers. (Grades K-12) 
nrich.maths.org

Dan Meyer has created 
problems and videos to 
inspire students to solve 
problems. (Grades 4-12)
blog.mrmeyer.com/2011/
the-three-acts-of-a-
mathematical-story

Galileo.org strives to inspire 
a passion for learning. 
(Grades K-12)
galileo.org/classroom-examples/
math/math-fair-problems

Wild Maths is mathematics without 
bounds. Visitors are free to roam 
and develop as  mathematicians. 
(Grades K-12) wild.maths.org

Youcubed’s main goal is to inspire, educate, and 
empower teachers of mathematics, by providing 
accessible and practical materials. 
(Grades K-12) youcubed.stanford.edu/tasks

A resource for educators passionate 
about improving students’ 
mathematics learning and 
performance. (Grades K-12)
insidemathematics.org

Cool math 
problems that 
are beautiful and
thought provoking. 
Favorite lessons
and complex problems. 
(Grades K-6)
mathforlove.com/lesson-plan/

Interactive 
mathematics 

miscellany 
and  puzzles.

(Grades 1-Adult)
cut-the-knot.org

Math Central 
is an 
award-winning 
website with 
investigations for
 teachers and students. 
(Grades 7-12)
mathcentral.uregina.ca/mp

On the NY Times website, 
Numberplay generally presents 
mathematical and/or logical 
puzzles and problems. 
(Grades 5-Adult) 
wordplay.blogs.nytimes.com/
category/Numberplay

Brilliant's problems are created by people all 
over the world. Members learn how to solve 
problems by engaging in a vibrant community. 
(Grades 2-Adult) brilliant.org

The Grabarchuk family produces puzzles for websites, mobile devices, 
and books. (Grades 4-12) GrabarchukPuzzles.com

While a standard textbook cannot 
adapt to each individual learner, 
expii.com was created to do just 
that. (Grades 5-12) expii.com and 
expii.com/solve

Alex Bellos’ 
Monday Puzzle. 
(Grades 5-Adult)

 www.theguardian.com/
science/series/

alex-bellos-monday-puzzle

Gord Hamilton has a passion 
for getting students to realize 
that mathematics is beautiful. 

(Grades K-12)
MathPickle.com

minds 

Empowering

through play. 
(Grades K -12)
thinkfun.com

MathsChallenge.net is a 
website dedicated to the 
puzzling world of mathematics. 
(Grades 4-Adult) 
MathsChallenge.net

Project Euler offers for free 
engaging computation problems 
that will require more than just 
mathematical insights to solve. 
(Grades 5-Adult)  projecteuler.net

G4G features puzzles, games, magic 
tricks, and crafts.  (Grades K-Adult)
celebrationofmind.org/puzzles_games

Explore the richness and beauty 
of mathematics through puzzles 

and problems that encourage 
collaborative and creative 

problem-solving.
(Grades K-12)

 jrmf.org

For more mathematical puzzles, visit...


