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Gathering 4 Gardner 14
Presentation Schedule

Thursday, April 7th, 2022

Morning Session: 8:30 AM - 12:00 PM

 
Speaker Title  

 

8:30 AM Skona Brittain 14 Numbers for G4G14 6 min
8:30 AM

 Kenneth Brecher The Sirius Enigmas Mathematical Tops 6 min
 

 George I. Bell Fun with tops 6 min
 

 Sabine Segre Rep-Tile Tangram 6 min
 

 Ryuhei Uehara * Solving Rep-tile by Computers 6 min
 

 Robert W Vallin An Unexpected Appearance (or Look Ma, No Rectangles) 6 min
 

 Jorge Nuno Silva * Magic and problems from half a millennium ago 6 min
 

 Rick Sommer Knuth’s Up-arrow into the Transfinite, and Beyond! 6 min
 

 Nathaniel Segal Performing On The Virtual Stage 6 min
 

 Adam Atkinson * Daedalus 6 min
 

 Raymond Hall @physicsfun: Social Media as a Museum of Science and Math (and A

Recent Path Down a Rabbit Hole with Pentomino Tilings)

6 min
 

10:00 AM    
10:00 AM

  Break 30 min  

     

10:30 AM Ingrid Daubechies Mathemalchemy 45 min
10:30 AM

 Darren Glass Chutes and Ladders with Multiple Dice 6 min
 

 Peter Cannon Interviewing Martin Gardner 6 min
 

 Hector Rosario * Playing in Gardner's Wonderland 6 min
 

 Alexandre Owen Muñiz Which Pentomino Is the Least Convex? 6 min
 

 Erika Roldan Guarding Art Galleries with Rooks and Queens 6 min
 

12:00 PM    
12:00 PM

Afternoon Session: 1:30 PM - 5:15 PM

 
Speaker Title  

 

1:30 PM Various Tributes to Berlekamp, Conway, Guy, Graham, and Randi 60 min
1:30 PM

 Ryan Hayward * Hex: Two Books and One Puzzle 6 min
 

 Jonathan Bobrow Open-Source Physical Cellular Automata 6 min
 

 Robert Bosch Domino Steganography and Lenticular Dice Mosaics: Two Examples of

Opt Art

6 min
 

 George Hart Warped-Grid Jig-Saw Puzzles 6 min
 

 Peter Knoppers 2e9s - An Egocentric View of Time 6 min
 

 Kate Jones * StarHex-14, The beauty of polyform sets 6 min
 

 Gabriel Kanarek A Variation on the Erdős-Straus Conjecture 6 min
 

3:30 PM    
3:30 PM

  Break 30 min  

     

4:00 PM Red Deupree Tetraflexagons / Coloring the Penrose Pattern 6 min
4:00 PM

 Ann Schwartz I am the Rhombus, Goo Goo G’Joob. Introducing the Rhombus

Flexagon!

6 min
 

 Michael Keith * 300+ Digits Of Pi From An (Almost) Ordinary Deck Of Cards 6 min
 

 Daniel Kline Playing with Puzzles: A Sample of What's New at the Julia Robinson

Mathematics Festival

6 min
 

 Koji Fujimoto * The Actual 26 Integers for a Diophantine Representation Those Make

Prime Number 2.

6 min
 

 Alexa Meade Adventures in Wonderland 6 min
 

 Chaim Goodman-
Strauss

Tooti Tooti! 6 min
 

5:15 PM    
5:15 PM

 * = remote presentation
Presentation Abstracts Available Online: www.gathering4gardner.org/g4g14-abstracts.pdf

FEATURED PRESENTATION

( * ) = VIRTUAL PRESENTATION



10 11

Presentation Abstracts Available Online: www.gathering4gardner.org/g4g14-abstracts.pdf

Gathering 4 Gardner 14
Presentation Schedule

Friday, April 8th, 2022

Morning Session: 8:30 AM - 12:00 PM

 Speaker Title   

8:30 AM Jason Rosenhouse The Use and Abuse of Probability in Evolutionary Biology 6 min 8:30 AM

 Robert P Crease From MG to QB 6 min  

 Carolyn Yackel Using Mathematics to Inform Fiber Arts Work 6 min  

 Andrew Rhoda The Slocum Mechanical Puzzle Collection at the Lilly Library 6 min  

 Steven Landsburg Why Do People Stand Still on Escalators But Not on Stairs? 6 min  

 Alba Marina Málaga
Sabogal *

Paper Tori 6 min  

 Barry Cipra A Toroidal Looping Puzzle 6 min  

 Barry Hayes * Is the Szilassi Polyhedron Unique? 6 min  

 John Edward Miller More Fun with Langford's Problem 6 min  

10:00 AM    
10:00 AM

  Break 30 min  

     

10:30 AM Mark Burstein A Literary Englishman and the Scientific American: Lewis Carroll’s
Appearances in ‘Mathematical Games'

45 min 10:30 AM

 Stanley S Isaacs Lewis Carroll, Mathematician Rediscovered: Euclid and Non-Euclidean
Geometry

6 min  

 Stuart Moskowitz Lewis Carroll, Mathematician Rediscovered: Trigonometry, Recreational
Math, Logic, and More

6 min  

 Chris Staecker Gerber's Great Graphical Gizmos 6 min  

 Hideki Tsuiki * Imaginary Cube Puzzles in classes 6 min  

 T. Arthur Terlep Waving Goodbye to Berlekamp 6 min  

12:00 PM    
12:00 PM

Afternoon Session: 1:30 PM - 5:30 PM

 Speaker Title   

1:30 PM Robert P Crease Fourteen: Workhorse Wondr 6 min 1:30 PM

 Delicia Kamins * Beware You All, Something Fourteen This Way Comes 6 min  

 Dana S Richards "Are you a mathematician?" 25 min  

 R. William Gosper The Dragon Function is way cooler than the "Dragon Curve". 8 min  

 Adam Rubin Further Abracadoodads 6 min  

 Bjoern Muetzel * Mirror Solids 6 min  

 Eleftherios Pavlides Tetradecahedron as Palimpsest of the Monododecahedral 1-Parameter
Family of the Pavlides Elastegrity

6 min  

 Lauren Siegel Making Math 6 min  

 Peter Winkler * Two Paradoxes of Slight Bias 6 min  

 Barney Sperlin The Accountant 6 min  

 Spandan
Bandyopadhyay *

Outsider Mathematics 6 min  

 Bill Ames Snowflake Formation 6 min  

3:30 PM    
3:30 PM

  Break 30 min  

     

4:00 PM Joe Buhler Wildly Nontransitive Dice 6 min 4:00 PM

 Susan Goldstine Mosaic Knitting Friezes: seventeen symmetries, minus three 6 min  

 Philipp Legner * Mathigon – Textbook of the Future 6 min  

 Ricardo Teixeira Magical Journey through Advanced Mathematics 6 min  

 Miquel Duran * Quantum Science and Card Magic: from basic concepts to cryptography 6 min  

 James Gardner Growing up with Martin Gardner: Some Old and New Reflections 30 min  

5:30 PM    
5:30 PM

 * = remote presentation

FEATURED PRESENTATION

( * ) = VIRTUAL PRESENTATION

Presentation Abstracts Available Online: www.gathering4gardner.org/g4g14-abstracts.pdf

Gathering 4 Gardner 14
Presentation Schedule

Saturday, April 9th, 2022

× ×

Morning Session: 8:30 AM - 11:15 AM

× ×

 Speaker Title   

8:30 AM Tomas Rokicki * Twizzle: Twisty Puzzle Simulator in JavaScript 6 min 8:30 AM

 Lucas Garron * Browsers, Bluetooth, and VR: From Physical to Virtual Twisty Puzzles 6 min  

 Carl Hoff The Double Circle Real 6×6×6 6 min  

 David Plaxco Knot Theory on the n*n*n Rubik's Cube 6 min  

 Robert Fathauer Walkable Knots and Links 6 min  

 Karl Schaffer * Dancing Topologically: Paths, Passes, and Puzzles 6 min  

 Chris Hibbert Math in Ingress 6 min  

 Jeanine Meyer Origami with Explanations 6 min  

 Akio Hizume * Fibonacci Turbine 6 min  

9:45 AM    
9:45 AM

  Break 30 min  

     

10:15 AM Alexander Kernbaum Seven Ways to Make an Ellipse — and One That Might be Useful 6 min 10:15 AM

 Aaron Siegel * Adventures in 3D Puzzle Printing 6 min  

 Dave Buck Playing Cards as Art 6 min  

 Nicole Dieker * Music Performance 4 min  

 Scott Vorthmann Customizing Zometool 6 min  

 George Hart A Quick Summary of Hands-on Mathematical Activities Participants May

Enjoy During the Excursion Afternoon

10 min  

11:15 AM    
11:15 AM

( * ) = VIRTUAL PRESENTATION

Gathering 4 Gardner 14
Presentation Schedule

Sunday, April 10th, 2022

Morning Session: 8:30 AM - 12:00 PM

 Speaker Title   

8:30 AM Todd Wilk Estroff The Ultimate Puzzle: a Psychiatrist Trying to Unravel Human Behavior 7 min 8:30 AM

 Dana Randall Dumb Robots, Smart Algorithms 6 min  

 Lew Lefton Mathematical Comedy 6 min  

 Sabetta Matsumoto Mobius Cellular Automata Scarves 6 min  

 Delicia Kamins * Fractal Top Down 6 min  

 Tiago Hirth The First Recreational Mathematics Meeting 6 min  

 Roger Russell
Manderscheid

The Amazing Number 153 and How it Captured Me 6 min  

 Cindy Lawrence Million Millimeter March for MoMath 6 min  

 Jim Weinrich Does Conway’s “Game of Life” Predict That the Speed of Light is Constant? 6 min  

10:00 AM    
10:00 AM

  Break 30 min  

     

10:30 AM Bob Hearn Rectangular Unfoldings of Polycubes 6 min 10:30 AM

 David Richeson Circle Square Illusions 6 min  

 Yossi Elran John Conway's Doomsday Rules for the Hebrew Calendar 6 min  

 Stephen Macknik Champions from The Best Illusion of the Year Contest 6 min  

 Henry Segerman Geared Mechanisms 6 min  

 Nancy Blachman COVID Misinformation Spreads because Many Don’t Understand Math 6 min  

 Erik Demaine * New Adventures in Puzzle Fonts 6 min  

 P. Justin Kalef The Whys (and Hows) of a Philosophical Teacher 6 min  

 Douglas McKenna Half-Domino Curves in an Interactive Math Book 6 min  

 Cassondra Darling Deciphering Wonderlands - Creating a Martin Gardner Digital Library 6 min  

12:00 PM    
12:00 PM

( * ) = VIRTUAL PRESENTATION
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Snub Cube Kaleidoscope  |  Bjoern Muetzel & Matthew Bajor  |  Page 26

A Few Algorithms for Musical Harmonization
Neil Bickford

You can try out two of these algorithms online at https://neilbickford.com/G4G14/index.htm!

Here’s a neat way to generate a harmony from a melody.

Let’s say we have a musical major scale – this could be C major, D-flat major, D major, or any other
major scale. Number the notes in the scale consecutively, using the number 0 for the first scale degree
in some octave. For instance, for C major, we might number the keyboard like this:

And for D-flat major, we might number the keyboard like this:

Now, let’s consider a melody using this numbering system. We’d like to

generate three additional musical parts, using pitches below the melody,

that harmonize well with the melody.

This shows the series of notes 4, 4, 5, 4, 4, 5, 6, 7, 4 in C major.

This makes it so notes with
the same degree always
have the same number taken
mod 7.

This is a bit like the Nashville
Number System, but here
we’ve subtracted 1 from all
numbers, and we have an
unbounded range so we
don’t have to denote the
octave separately.

Traditionally, the four total
parts are named the bass,
tenor, alto, and soprano
voices (as if we were writing
for a SATB choir), counting
from the lowest part to the
highest part. However, this
algorithm doesn’t ensure
that each part is within the
typical singing part range,
and it also doesn’t always
follow voice leading rules.
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We’ll start by creating three-note chords (triads) in three different

positions, which we’ll call position 0, position 1, and position 2.

To create a position 0 triad, take the melody note n and add notes n-2

and n-4. For instance, if our melody note was 9, we’d create the position

0 triad {5, 7, 9}. The root note, r, is the lowest note of the chord in

position 0 (here, it’s r=n-4).

To create a position 1 triad, start with the chord {n, n+2, n+4} (which is a

position 0 triad with the melody note as the root). We want the melody

note to be the highest part, so we’ll invert the chord by taking all the

notes above the melody and subtracting 7 to move them down an

octave, then sort them from lowest to highest. This gives the chord

{n-5, n-3, n}, with root note r=n.

Finally, to create a position 2 triad, follow the same procedure, but start

by building a position 0 triad where n is the middle note. This gives the

chord {n-5, n-2, n}, with root note r=n-2.

To add the bass part, add the root note shifted down an octave (r-7)

–unless the root note is congruent to 6 mod 7! In that case, add r-9.

Another way of summarizing the above is that we’ll generate one of

three chords:

● Position 0: {n-11, n-4, n-2, n}
● Position 1: {n-7,  n-5, n-3, n}
● Position 2: {n-9,  n-5, n-2, n}

then if the lowest note is congruent to 6 mod 7, we subtract 2 from it.

To harmonize a melody, take each melody note in turn, generate the

chord above for it, and then randomly choose one of the other two

positions. Importantly, we never repeat the same position twice in a row!

This article’s positions 0, 1,
and 2 are also known as
triads’ root position, first
position, and second
position.

What’s going on here is that
when r=6 (mod 7), we get a
tritone between the root and
one of the other notes in the
chord! Moving the root down
two more notes turns this
into an inversion of a
dominant seventh chord,
which usually sounds less
dissonant to most listeners.

This algorithm’s pretty
compact! The core
JavaScript code from this
article’s website for this fits
in this sidebar:

If (nextPosition == 0)
chord = [n-11,n-4, n-2, n];

else if (nextPosition == 1)
chord = [n-7, n-5, n-3, n];

else
chord = [n-9, n-5, n-2, n];

if((chord[0] % 7) == 6)
chord[0] -= 2;

nextPosition =
Math.floor(

nextPosition + 1
+ Math.random() * 2

) % 3;

Here’s an example of a harmonization generated using this algorithm on

the melody above.

This algorithm comes from Chapter 22, Randomness in Music, of Donald

Knuth’s book Selected Papers on Fun & Games, where he attributes it to a

1969 class from David Kraehenbuehl (1923-1997) at Westminster Choir

College. I’ve rephrased it a bit in the presentation above.

Procedures for creating harmonies have existed for a while, although

they’re usually phrased as a set of constraints. The extra step of

choosing a random harmony that satisfies the constraints sometimes

turns it into an algorithm in the usual sense.

For instance, Johann Joseph Fux’s 1725 Gradus ad Parnassum describes

a set of rules for constructing each of four kinds of counterpoint, such as

beginning and ending on consonance, avoiding tritones, and avoiding

parallel fifths and octaves.

It turns out that the first few chapters of Peter Ilyitch Tchaikovsky’s Guide

to the Practical Study of Harmony have guidelines that come relatively

close to describing Kraehenbuehl’s algorithm above! Section 9 of (from

the 1900 English translation) describes the rules above for the three

triad positions above and the bass part (although it doesn’t include the

rule for moving the bass note to create a dominant 7th chord). §14

describes how Kraehenbuehl’s algorithm never uses the same position

twice in a row in terms of avoiding parallel fifths and octaves, with the

constraint that

Here we’ve chosen each new
position randomly, but we
could choose it
deterministically instead. We
have a choice of 3 positions
for the first note and 2
positions for each
subsequent note, for a total
of 3 2m-1 possible
harmonizations of an
m-note melody.  Knuth also
shows how to
steganographically encode
information this way, as a
stream of a base-3 integer
followed by m-1 bits.

A set of constraints can also
be a program! One can write
a Sudoku solver in Prolog by
specifying the rules of
Sudoku and the initial clues
as CLP(FD) constraints;
Prolog’s constraint solver will
find a solution.
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Two triads, however closely related internally and externally,
must never directly follow each other in the same position, as
parallel fifths and octaves must necessarily occur.

In addition to algorithms like the ones described above, some musical

harmonization algorithms take a corpus of existing harmonized pieces,

then try to construct a statistical model of what harmonies in the corpus

tend to look like. They can then generate harmonies for new melodies by

choosing from the distribution of harmonies they think are likely.

Hild, Feulner and Menzel (1991) trained a system named HARMONET on

a collection of 400 Bach chorales. The neural network (or neural

networks – it can use one, or choose between the outputs of three) tries

to guess the next symbolic harmony given the previous harmonies, the

previous, current, and next notes, and the rhythmic location of the note

in each bar.

From HARMONET: A Neural Net for Harmonizing Chorales in the Style of
J. S. Bach

More recently, David Li’s Choir and Blob Opera are web applications

that also generate four-part SATB harmonies using a neural network.

There doesn’t appear to be much information about the neural network

they use (or, worryingly, about the dataset it was trained on!), but its

input and output format looks similar to Liang, Gotham, Johnson, and

Shotton’s BachBot (from Automatic Stylistic Composition of Bach

Chorales from Deep LSTM, 2017).

BachBot uses a Long Short-Term Memory (LSTM) architecture, which

essentially is a deep neural network that transforms vectors to other

vectors while keeping some internal memory state.

Both Choir and Blob Opera
use the same neural network
– or, at least, the same
weights. Blob Opera has an
additional network to
synthesize sound.

BachBot’s source code is
available online at
https://github.com/feynman
liang/bachbot.

BachBot takes as input a series of 16th-note frames, each of which contains a melody note (continued

or not from the last frame) or a fermata (denoting the end of a musical phrase). These are embedded

into vectors and passed one by one to the LSTM, which outputs a probability distribution. Liang et al.

then optimized the parameters of the model so that it tended to assign high probabilities to the full

harmony of the Bach chorale for that frame. When running on new melodies, BachBot inputs frame

and melody symbols to the LSTM, retrieves the note probability distribution output by the LSTM, and

chooses the harmony consisting of the highest-probability notes. If we wanted BachBot to make more

unexpected decisions, we could instead have it randomly sample from the probability distribution.

However, It’s possible to miss in the above discussion that constructing harmonies is an art. There are

many harmonies Kraehenbuehl’s algorithm above can’t construct. The neural network-based methods

would be unlikely to guess surprising but sublime melodies, and also usually have no way to artistically

collaborate with a user. The algorithms here also generally have no concept of the emotions of the

piece – Kraehenbuehl’s algorithm will choose a random harmonization at each step!

Breaking melodic patterns can be a powerful tool. Additionally, books on harmony sometimes have

conflicting guidelines, and while that defies computer implementation, that’s okay: Tchaikovsky, for

instance, writes of weighing which conflicting rules to follow, or of breaking earlier rules artistically.
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A triptych of domino mosaics. The center piece arranges 48 complete sets of double-nine dominos in 

such a way that they collectively resemble Boris Karloff as Frankenstein's Monster. The left piece reveals 

what happens when we remove all of the horizontally oriented dominos; the remaining dominos 

collectively resemble Bela Lugosi as Count Dracula. The right piece shows what happens when we 

remove all of the vertically oriented dominos; here, the remaining dominos collectively resemble the 

negative of the Bela Lugosi image. Hence the title: Dracula + (-Dracula) = Frankenstein's Monster. 
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Inspired by the Pythagorean Tree in a plane, I stitched the Sakura Pythagorean Tree on a temari ball of 
diameter 58 cm. This Pythagorean tree has order five and begins with a square of side 5 cm. Upon the 
first square I constructed two squares to depict the Pythagorean theorem, and from there I continued 
recursively. Each square is scaled down by a linear factor of about 0.7. 

Domino Steganography: 

Dracula + (-Dracula) = Frankenstein’s Monster

Robert Bosch

Sakura Pythagorean Tree

Marcela Chiorescu
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An artwork dedicated to the memory of Marc G. Pelletier (1958 – 2017), Robert Abbott (1933 – 2018), 

and Markus Götz (1974 – 2018). 
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GATHERING FOR GARDNER 14 EXCHANGE GIFT                                  

Authors: Teja Krašek (tejak@yahoo.com) 1 

                Stephen Russell (bdoc23@gmail.com) 2             

Organization1: Freelance Artist 

Organization2: Barefoot Doctor World 

Title: AMPEDHEAD - Microdose: Peach, Peach, Peach  

Our AMPEDHEAD - Microdose: Peach, Peach, Peach audio-visual G4G14 exchange gift 
features a kaleidoscopic animation by Teja Krašek intervowen with the unique multi-layered, 
cinematic electro-organic AMPEDHEAD composition. The soundscape comprises advanced 
sound-frequency design (68 Hz. 110 Hz, 300 Hz, 432 Hz, and 528 Hz) to produce binaural 
beats and activate healing. With an inaudible subliminal affirmation pattern and unique 
combination of elements involved, it makes it the only brain entrainment technology of this 
kind on the planet. Our video can be watched at the following link: 
https://www.youtube.com/watch?v=omr06epqm0I  

Ampedhead – Microdose: Peach, Peach, Peach

Matjuska Teja Krasek & Stephen Russell

A G4G14 Heartwork

Matjuska Teja Krasek
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G4G14 Gift

The Meta-Hilbert Curve → 14 Hilbert Curves

Doug McKenna
Mathemæsthetics, Inc.

Boulder, Colorado USA

doug@mathemaesthetics.com

Abstract

The Meta-Hilbert Curve construction is an infinite sequence Cn of

space-filling curves, each a continuous mapping from the unit interval

onto every point within a rotationally symmetric fractal tile, each the

same area. The boundary of each Cn comprises eight “fractalized”

Hilbert Curve approximation paths, four facing outwards, four in-

wards. The sequence of boundary fractal dimensions converges to 2.0,

i.e., space-filling. C∞ has twice the area of any Cn, but comprises 14

piecewise-connected Hilbert Curves, some coinciding with others.

The number 14 is not normally associated with any mathematical ob-
ject demonstrating four-fold rotational symmetry in the plane. But due to
combinatorial constraints arising from the need for open-ended, piecewise-
connected continuity, and the interesting things that can sometimes happen
when one takes a limit, the Meta-Hilbert Curve comprises 6 + 6 + 2 = 14
Hilbert Curves. The second 6 lie, in reverse order, on top of the first 6.

The following is a condensed version of a much fuller exposition and mo-
tivation, with animations of the construction and interactive drawings, taken
from my dynamic, electronic book, Hilbert Curves [1], currently published
for iPad and iOS devices, and M1 MacOS computers, demoed at G4G14.
The construction was first minimally described (under the name “Inside-Out
Curve”) in a paper on loops in DNA [2]. My collaboration with primary
authors of that paper began with a chance meeting at the G4G10 Gathering
for Gardner conference.
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Figure 1: The Meta-Hilbert Curve Construction
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Figure 2: The Meta-Hilbert Curve motif for C4 threads its prototile from a

(left arrow) to b (right arrow) in such a way that it hews within ε (one sub-
square width) of the outside or the inside of six Hilbert Curve approximation
paths, two up (facing right, then left), two over (facing down, then up), and
two down (facing left, then right). Within 2ε of b, the path turns around and
hews within 2ε of the same six approximation paths, but in reverse order.
Then, from within 2ε of a, the path completes its journey to b by hewing
within 2ε along the bottom two Hilbert Curve approximation paths (facing
down, then up), vibrating as a square-wave would. Scaled, rotated, and
connected copies of this path would build the second approximation of this
motif’s self-similar, space-filling curve. The eventual fractal tile’s boundary’s
dimension increases to 2.0 (with ε → 0) as increasingly detailed Hilbert Curve
approximation paths are relied upon to build each fractal tile C

n. The square
wave vibrations disappear in the limit, so the mapping to the final two Hilbert
Curves has half the instantaneous “speed” of the previous 12 Hilbert Curves.
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Approximation paths to the Hilbert Curve illustrate the sequence of al-
ways edge-adjacent sub-squares that increase in number as the square of the
reciprocal of their decreasing-to-zero size. The sub-squares converge to the
continuous Hilbert Curve, a fractal of dimension 2.0.

But the same is true of the “fractalized” boundaries of C
n. The connected

area of each Cn becomes increasingly wispy, elongated, and branched, while
the tile boundaries become increasingly close to space-filling Hilbert Curves.
The interior area vanishes at the same limiting “moment” that the points
to which the boundary is converging from both inside and outside take over
being the area of a rotationally symmetric tile (with linear boundary). So
if A(n) is the normalized unit area of every C

n, we have A(n) = 1 for all
finite n, but limn→∞ A(n) = 2.

The foregoing Meta-Hilbert construction works using any order-n approx-
imation path for any square-filling generalization of the Hilbert Curve based
on the n× n recursive subdivision of the square; see, e.g., Figure 102 in [1],
which uses an order-3 Wunderlich Curve approximation path to build an
element of a Meta-Wunderlich Curve sequence of space-filling curves.
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Snub cube kaleidoscope
Bjoern Muetzel and Matthew Bajor

Eckerd College, St. Petersburg, Florida

Description:

The snub cube is one of the Archimedean solids. We made a stellated version of this
solid and put mirrors on all of its inside faces. We then used a spherical camera to take
a picture of the inside and transformed it using a stereographic projection. This method
produces characteristic kaleidoscopic images for each Platonic and Archimedean solid.
The snub cube and the snub dodecahedron are the two chiral solids. Special for these two
solids are the spirals in the image.

More info: http://natsci.eckerd.edu/∼muetzeb@campus/gallery.php
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Polygoriginal (Poly-gor-ig-in-al) is a program that generates a personalized geometric art image with an 
algorithm I am writing. It varies, for example, the number of vertices, the hex colors used, and the 
spacing of the vertices based on unique inputs such as your name, your favorite integer (between -
65537 and 65537 inclusive), the floor of the number of years old you are (colloquially called your age), 
and the number of G4GNs that you have attended. It is has a small easter egg that if you input “Martin 
Gardner” as your name (it doesn’t matter what the other inputs are), it will give you the G4G14 logo. 

 

Included below is a link to two sample images (aesthetics may be subject to change). 

https://www.dropbox.com/s/ho3h9f4gh070h68/Polygoriginal%20Examples.png?dl=0 

Designed and executed by Moses Samuelson-Lynn with the supervision and advice of Maria Samuelson 

 

Polygoriginal

Maria Samuelson & Moses Samuelson-Lynn
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Please contact me at taterlep@gmail.com for additional (free) print copies of the original or the raw image or .mat 
file. Cheers! 
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Waving Goodbye (Artwork) -   by Art Terlep 
 
This gift of 4 4x6in images will be included in the physical exchange: Martin Gardner, Elwyn Berlekamp, John 
Conway, and Richard Guy. This digital version also features Les Shader. 
 
If you’ve ever traveled in a grid, you might have noticed that the areas you can reach for a fixed time form a 
diamond shape. For example, if you can travel 6 blocks, you might go north 6 and 0 east, or 3 east and 3 north. 
These lines of equal distance, or iso-distance curves, annoy my sense of Euclidean geometry and personally, I like to 
have more circular distances whenever I play a board game on a grid. Well, chamfering is one solution in which 
weighted edges are drawn to nearby neighbors to approximate Euclidean distances. In the image (a) below, red = 1, 
orange = sqrt(2), yellow = sqrt(5), and so on. (c) Shows the iso-distance curves. So, you can generate pretty roundish 
minimum distances this way! 
 

Terlep-Art-GiftExchange-WavingGoodbye-G4G14 

 
Well, I found another way to make the same chamfer with a special kind of graph (network) called a replacement 
product. Basically, instead of drawing lines out from a single point, a little network is used inside each pixel to 
“process” the Euclidean distance through a handful of channels (some of you may be noticing at this point that 
there’s an eerie similarity to my PUZZLE gift here and you aren’t wrong!). The catch is that you start and stop on 
the same vertex (node). The graph in (d) has 4 operating modes, or options for the start/stop point (yellow dots), 
which when composed together give a wavy, shadowed version of the original. Although it’s constructed similarly 
to a kind of Fourier transform, it actually sort of puts you back in the image space (isn’t that spooky?). By using the 
phases to select color gamuts and adjusting the frequency over the image space, surreal artistic interpretations of the 
original image can be imagined. I decided to apply this to the images of some familiar faces and that is my gift to 
you. 
 
One other thing, I owe my entire G4G experience to Leslie Elwyn Shader and his family and this work is inspired by 
conversations with Elwyn Berlekamp over 10 years ago regarding the concept of “influence” in the game of Go 
which occurred some time after he gifted me an entire Go board - a great story you should ask me about sometime. 
For them, I have a very special gift, and that is the name of my fourth child, Elwyn Douglas Terlep (though I 
admittedly found out after the fact that Elwyn was also Les’s middle name! The infinitely improbable odds!). 
Questions about his rather unique name always give me a reason to talk about some great people in my life and the 
mathemagical conference that inspired so many things over my years of absence from it.  
 
If you want to know more about my clown car chamfers, just email me and I’ll send you copies of my recent work 
in this area! I think it’s a lot of fun and I hope you do too. It’s good to be back. I missed you all. 
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MMooddeerrnn  IInntteerrpprreettaattiioonnss  ooff  
TTrraaddiittiioonnaall  IIssllaammiicc  GGeeoommeettrriicc  PPaatttteerrnnss  

 
 

 
 

Phil Webster 
Phil Webster Design 
Chandler, AZ, USA 

 
Email: phil@philwebsterdesign.com 

Web: https://www.philwebsterdesign.com/ 
Instagram: https://www.instagram.com/philwebsterdesign/ 
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My Background 
 
I have been creating geometric designs and models since junior high school. During a 
trip to India in 2012 I became especially enthralled with Islamic geometric patterns. I 
began pursuing my art more fully, and I am now working full time as an artist.  I have 
been an active participant in the Bridges conference since 2013, and am excited to 
attend my first G4G conference this year. All of the works shown here, and many more, 
can be found on my website. 
 
My Recent Work 
 
In the past several years I have been exploring ways of combining Islamic geometric 
patterns (hereafter, IGP) [1] with various mathematical concepts to create meditative, 
contemporary art and décor.  
 
I will briefly present three avenues of exploration here: 

1. Arranging IGP motifs in fractal arrangements 
2. Wrapping IGP around Platonic Solids  
3. Applying IGP to the faces of polar zonohedra 

 
A Sneak Peek at What’s Ahead… 
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IGP + Fractal Trees 
 
My first exploration upon returning from India was to find a way to arrange IGP in a 
fractal pattern, i.e., with motifs at infinitely many scales and with self-similarity 
throughout the pattern. Ultimately I devised a way to arrange motifs at the nodes of n-
fold fractal trees, connect the motifs from level to level in a way consistent with 
traditional patterns, and then arrange such trees radially (with selective pruning) into 
radial designs (see my Bridges 2013 paper for details [2]).  
 
Outward Radial Patterns 
 

  
Infinity Bloom 8 - Forest Green/Yellow Infinity Bloom 8 - Moroccan on White 

 
Points of convergence on the peripheries of these designs suggested patterns that 
shrank radially inward, instead of outward, and the two can be elegantly combined into 
an “inward-outward” pattern as well.  
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Inward Radial Patterns 
 

  
Starburst 10 - Blue Starburst 10 – Plum/Honey 

 
Combined (“inward-outward”) Radial Patterns 
 

  
Infinity Bloom 10 – Garnet/Honey Infinity Bloom 8 – Emerald/Honey 
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Finally, some such patterns lend themselves to periodic repetition in the plane, coming 
full circle back to the original aesthetic but with “embedded” areas of fractal diminution. 
 
Repeating Patterns 
 

  
Vibration 6 – Moss/Yellow Vibration 8 - Blue 
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IGP + Platonic Solids 
 
Lamps 
Since many IGP repeat on grids with local repeat areas of equilateral triangles, squares, 
and pentagons, it is an easy conceptual leap to take these repeat areas and apply them 
to the surface of the Platonic solids. Many others have followed this approach to create 
solids with beautiful surface patterns.  
 
What I have done which is slightly different than most is to focus on cutting the patterns 
through the faces. This idea was directly inspired by the carved sandstone screens 
featured prominently in the forts and palaces of Northwest India, known in Hindi as jaali 
(meaning “net”) [3]. Thus I call my shapes that combine this idea with polyhedral 
shapes, Jaalihedra™. My most recent series of work has been a number of Jaalihedra™ 
Lamps, of which a few are pictured below. As you can see, they function as sculptures in 
their own right when unlit, but cast dramatic shadows when lit. 
 
Jaalihedra™ Lamps 

   

   
“Hex” “Mexuar I” “Pentastar I” 
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Sculpture 
A different approach is to custom design face patterns that would not necessarily tile 
the plane in the original repeat pattern. As long as the edges and vertices of each face 
are compatible with adjoining faces, the resulting patterned solid can still be cohesive 
and attractive.  
 
In the middle of 2020 – in order to celebrate in the advance the end of that oh-so-trying 
year! – I decided to embed “2021” into a piece of art. Ultimately, I designed a custom 
IGP that placed 7 petals of a rosette at each corner of a pentagon, thus yielding 21-
pointed rosettes at each of a dodecahedron’s 20 vertices where 3 faces meet — hence, 
20(21). Furthermore, placing 20-fold rosettes in the center of each of the 12 pentagonal 
faces yielded (20)12 – the year I first started investigating IGP in depth. The resulting 
sculpture was meticulously built using hand-painted wood and laser cut mat board, and 
is shown below (as well as detail of one face on the cover page). 
 

 
(20)12-20(21): Ten Years of Inspiration 
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IGP + Polar Zonohedra 
 
In addition to the repeat areas listed above, rhombic repeat areas are also quite 
common in IGP. There is a class of beautiful polyhedra called polar zonohedra 
(hereafter, PZ), all of whose faces are rhombi of various aspect ratios [4].  
 
I have a forthcoming Bridges paper [5] in which I discuss how to identify PZ whose face 
angles are “close enough” that IGP with N-fold local symmetry can be applied to all of 
the various faces of a single PZ in a cohesive manner with minimal distortion. The 
examples shown below are digital models, but I plan to execute many of these as 
physical sculptures and lamps in the coming months. 
 

 
A variety of polar zonohedra decorated with rhombic-repeat IGP 

 
Conclusion 
The tradition of IGP is so vast and rich that there are countless opportunities for modern 
artists to expand these patterns in new directions. I will continue to explore these 
horizons, and encourage anyone who finds these patterns as captivating as I do to 
embark on explorations of their own! 
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All images © Phil Webster. All rights reserved. 
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Hex: Two Books and One Puzzle  |  Ryan Hayward  |  Page 48

GAMES | 41

G4G gift exchange. Two puzzles, hex and Y.

submitted by Ryan Hayward email hayward@ualberta.ca

a
b

c
d

e

1
2

3
4

5

hex puzzle based on a 1942 puzzle by Karen Thorborg. Rules: on a

turn, color any empty cell with your color; win by joining your two sides.
Find all winning next moves for B (black). Hint: B’s next move

5.B[c1] loses to 6.W[a4].

0

12

3

4

5
6

7

8

9

10

11

12

1314

15

16

17

Y puzzle based on puzzles by Craige Schensted, later called Ea Ea.

Rules: on a turn, color any empty cell with your color; win by joining all
three sides. Find all winning next moves for B. Hint: each corner
cell touches two sides, so 6.B[8] loses: 7.W[9] forces 8.B[17], then 9.W[10]!

and W wins with one of {4,11} and one of {12, 13}.

Solutions on the next page (don’t look).

More puzzles in Hex, the Full Story

https://www.routledge.com/hex-Inside-and-Out-The-Full-Story/

Hayward-Toft/p/book/9780367144227

and Hex, A Playful Intro https://bookstore.ams.org/nml-54/ .
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a
b

c
d

e

1
2

3
4

5
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How To Get Even

Ryan Morrill

There are 27 counters in the centre pile. Players take turns claiming 1, 2, 3 or 4 counters from the centre
pile. The player with an even number of counters when the centre pile is empty is declared the winner.

When we say we have solved a game, we mean we have found a winning strategy. What we mean by
this, is we have found a strategy that wins every time, assuming both players play optimally. We introduce
definitions for winning positions and losing positions in the following way.

• The empty game (or the game where you have lost and there are no more moves to be made) is a
losing position.

• A winning position is one where at least one move sends to a losing position.

• A losing position is one where every move sends to a winning position.

Every position of the game is either a winning one or a losing one. If you can identify this, you will have
the winning strategy from any position of the game. More discussion on winning strategies can be found
in Berlekamp, Conway and Guy’s wonderful series of books [1]. Let’s try working backwards using this
idea.

Solution:

The first key is to write out every position the game can be in. This includes the parity of each players
hand. Here “even even” means both players have already taken an even number of counters, and “even
odd” means the first player (one going next) has taken an even number of counters, and the other player
has taken an odd number of counters. We write all viable positions as follows, up to 16 counters in the
middle:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

It is easy to see that if there are 0 left and you have even, then you have won, so this is a winning position.
If there are 0 left and you have odd, this is a losing position. We put those down:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

One important detail to be careful of: the board is from the perspective of the player going next, that
means after each move, the “even odd” will swap. This means,
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Counters taken Even Number Odd Number

In the First Row Stay in the First Row Go to the Second Row

In the Second Row Go to the Third Row Go to the Fourth Row

In the Third Row Go the the Second Row Go to the First Row

In the Fourth Row Stay in the Fourth Row Go to the Third Row

We record this swapping on the left of the diagram. We can also now fill out every position which may

send to our first losing position:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

It is also not hard to see that the top left position is surely a losing one, as all it can do is send to a winning

position, so we record that data as well:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

Now we search for all positions which can send to this new losing position, and mark them off as winning

positions:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

Now we search for a position which can only send to a winning one. It is not hard to see that “odd odd

5” and “odd even 6” are losing positions. We mark them off:
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even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

Now we look for every position which which can send to one of our losing positions. We find that “odd

odd 7,9” and “even odd 6,8” can send to “odd odd 5”, and “even odd 10” can send to “odd even 6”. We

record these as losing positions:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

Now we see that “even even 7” can only send to winning positions, so it must be a losing one:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

We record every position which can send to “even even 7” as a winning position:

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

By continuing this process we can fill out the rest of the chart:
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even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

Do you see the pattern? The losing positions are the ones which are congruent to 1 (mod 6) where both
players have even, congruent to −1 (mod 6) where both players have odd, and congruent to 0 (mod 6)
where the first player has odd and second player has even.

You may have noticed there are other valid moves that send to losing positions. Here are all the winning
moves up to 33 counters. We can easily see that the original game is a 1st player win (even even 27), and
the only optimal move is to take 2. We use slightly different colours to indicate if the move is sending to
1 (mod 6), 0 (mod 6), or −1 (mod 6).

even even

even odd

odd even

odd odd

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

1

1

3

3

5

5

7

7

9

9

11

11

13

13

15

15

even even

even odd

odd even

odd odd

18

18

20

20

22

22

24

24

26

26

28

28

30

30

32

32

17

17

19

19

21

21

23

23

25

25

27

27

29

29

31

31

33

33

(note: this diagram is missing the line from even even 17 to even even 13).

We summarize (perhaps more succinctly) the winning strategy below, assuming you are currently in a
winning position.

• If you both have even =⇒ send to 1 (mod 6).

• If you have odd, they even =⇒ send to 1 (mod 6).

• Otherwise, =⇒ send to 0 (mod 6) or −1 (mod 6).
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This is Problem 286 in [2]. You can also consider the misère version of the game where the one ending
with an odd number of counters is the winner. Perhaps more interesting is to consider what happens when
we vary the number of counters being taken (for example, 1, 2, 3, 4 or 5).

References

[1] Berlekamp and Conway and Guy, Winning Ways for your Mathematical Plays, A K Peters, 2001.

[2] Boris Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, Dover, 1972.
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Catenate 1. to connect, in a series of links or ties; to chain. 2. A card resource management 

and trick-taking game with the goal of creating sequences of cards.   © Jay Schindler, 2022

BACKGROUND: I wanted to develop a card game that: 

1. Focuses less on taking tricks, and more on using cards as resources

2. Doesn't have low and high value cards: each card is equally powerful yet limited

3. Can be played by 3 to 8 people with one or two decks of normal playing cards

4. Allows players to spend points to try to gain higher initiative when trading cards.

5. Is a quick game, so it can be played many times at a sitting with scores accumulating over multiple games.

GAME SUMMARY: For 3 rounds players are given 4 cards and must decide which card to put in their 

RESERVE, which card to put up for AUCTION, which card to use for TRADE, and which card to save for their 

FUTURE. They may then spend points to try to gain initiative while trading for cards. Card trading ensues. For 

the 4th and final round players use their FUTURE cards. Finally, players score their 13 cards by creating short 

and long sequences of cards to score the most points. 

BEGIN WITH THE END IN MIND-- END OF GAME SCORING: By the end of the game players will 

have 13 cards. The goal is to create one or more numerical sequences of cards (concatenations) that score the 

most points. However, card suit (and suit color) is important too. There are 3 types of sequences:

Sequence in Same Suit: 3 4 5 6 7

Sequence in Same Color: 10 J Q K A 2

Sequence (no suit or color similarity): K A 2 3 4 5 6

The LENGTH of each sequence determines its value, but a sequence in the Same Color or Same Suit is more 

valuable. Note: Sequences can wrap from King to Ace-- there is a circular order to the cards. 

Point Value of Sequences:

 # of Cards 1 2 3 4 5 6 7 8 9 10 11 12 13
 Sequence (plain) 1 2 3 8 10 12 21 24 27 40 44 48 65
 Sequence in color 1 3 6 10 15 21 28 36 45 55 66 78 91
 Sequence in suit 1 4 9 16 25 36 49 64 81 100 121 144 169

Scoring Examples: If you have the following 13 cards at the end of game play:

J   Q   Q   A   2   3   4   4   5   6      6   7   8 

You could score the cards with the following sequences, for a total of 30 points. 

A  2    3  4  5  6    7    8 for 24 points (Sequence)  

J  Q for 3 points (Sequence in color)

Q    4  6   for 1 point each (Single cards as sequences)

Or, you could score the same 13 cards in different sequences, for a total of 34 points

A    2  for 4 points  (Sequence in suit)

3  4  5  6 for 16 points  (Sequence in suit)

6    7  8  for 9 points   (Sequence in suit)

J  Q   for 3 points  (Sequence in color)

Q    4    for 1 point each (Single cards as sequences)
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You can decide how to create your sequences, and each sequence can be scored using the most appropriate scale. 

(For your Final Score, you will also add the number of coins in your cup at game end-- but more on this later).

INITIAL GAME SETUP: Use one full suit of 13 cards (A through K) for each player in the game. With 3 players you 

might select spades, hearts, and clubs. For 5 players you would use 2 decks and could choose spades, hearts, clubs, 

diamonds, and spades. Try to keep suits and suit colors as balanced as possible,  and let players know what all the suits are

in the game deck before beginning the game.

Choose the first dealer any way you like. The dealer shuffles all the cards and deals one card face down to each player-- a 

GIFT card. Players must then choose the role for the card: RESERVE, TRADE, or AUCTION, and position the card. (See 

the discussion of these card roles and positions below.) 

DEAL CARDS TO PLAYERS: The dealer deals 4 cards to each player, 2 at a time. Each player must deploy exactly one 

card into each of the 4 following roles. Position the cards in front of themselves on the table or playing area according to 

the following layout:

AUCTION

CARD(S)

PLAYER: RESERVE FUTURE

LAYOUT CARD(S) CARD(S)

TRADE

CARD(S)

RESERVE CARD ROLE: One card is placed face down to the left. This card is your resource alone and will be yours until 

the end of the game. Use it to help create a valuable sequence at game end. Keep it face down until scoring at game end.

TRADE CARD ROLE: One card is placed face down near you. You will use this card to trade for (and win) a card available 

for auction. It starts as a hidden card, but will be turned face up later.

AUCTION CARD ROLE: One card is placed face down further away from you. You are offering this card up for auction in 

trade for another card. You may get a more helpful card during trading. It will be turned face up later.

FUTURE CARD ROLE: One card is placed face down to your right. This card will be yours to use in the last round-- the 

future 4th round of the game.  You will have 3 cards in this position by then.

Once all players have placed all their cards, players turn their AUCTION and TRADE cards face up. Now it’s time for the 

Dance of the Cups to determine player initiative for the upcoming trade action.

DANCE OF THE CUPS: DECIDING PLAYER INITIATIVE FOR TRADE

INITIAL SETUP: In the center of the table or game area, place a paper with a large arrow printed on it. On the arrow, line 

up a sequence of opaque cups (or goblets), each cup marked to identify its owner. (I use miniature plastic cups which each 

person has decorated with stickers of their own choosing.) Cups are mixed randomly before placing them in the line. Then,

starting with the first cup at the head of the arrow, and working down to the last cup, put coins (e.g., dimes) in each cup as 

follows: Cup 1: 1 coin, Cup 2: 2 coins, Cup 3: 3 coins, Cup 4: 4 coins, etc., until all cups have coins in them.  

DANCING THE CUPS: Place a marker next to the first cup. (I use a small miniature of a knight.) The owner of that cup 

may (or not) spend 1 or more coins to move along the line—one position for each coin they spend from their cup. For each 

position they move, they must put one coin into the cup they pass. Thus, they share their wealth to change position (and 

initiative). Going earlier or later in order can be strategic! Players are limited how far they can move based on the number 

of coins in their cup (e.g., if a cup has 2 coins in it, that player may move at most 2 spaces up or down the line of cups).  

Once the person owning the first cup is done moving their cup, move the marker (knight) down to the 2nd cup in the line. 

The owner of the 2nd cup may also move their cup up or down the line of cups by spending one coin per position. Move the 

marker (knight) to the 3rd cup.  That cup’s owner may now move and spend coins in the same manner. This process 

continues down the cup positions to the end of the line. As a result, the first may be last, and the last may be first.
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TRADE: Starting with the player who owns the first cup (highest initiative), and moving down the line of cups to the 

player with the last cup (lowest initiative), each player may now make 1 Trade. 

On each player’s turn, the player takes 1 of the cards in their TRADE area and trades it with a card in one player’s 

AUCTION area. The player can also choose not to trade and keep their cards as is. The player can also choose to trade their

own TRADE card with a card in their own AUCTION area. 

When trading, the cards traded go into each player’s hands. Each player (the trader and recipient) now decides WHERE to

put the traded card: into their RESERVE, AUCTION, or TRADE area. 

WINNING A CARD DURING TRADE: Cards have a cyclical order to determine which card can successfully take another 

card during trading. Each card can take (or win) another card of the same value or a value up to 6 positions less than its 

own. In other words:

An A  can take: A, K, Q, J, 10, 9, 8 A   7 can take: 7, 6, 5, 4, 3, 2, A 

A   K can take: K, Q, J, 10, 9, 8, 7 A   6 can take: 6, 5, 4, 3, 2, A, K

A   Q can take: Q, J, 10, 9, 8, 7, 6 A   5 can take: 5, 4, 3, 2, A, K, Q

A   J can take: J, 10, 9, 8, 7, 6, 5 A   4 can take: 4, 3, 2, A, K, Q, J

A  10 can take: 10, 9, 8, 7, 6, 5, 4 A   3 can take: 3, 2, A, K, Q, J, 10

A   9 can take: 9, 8, 7, 6, 5, 4, 3 A   2 can take: 2, A, K, Q, J, 10, 9

An 8 can take: 8, 7, 6, 5, 4, 3, 2 

It might help to remember (and display) the following card pair guides when conducting trading:

      A  ↘ 8    K  7    Q  6    J  5    10  4    9  3    8  2    7  A    6  K    5  Q    4  J    3  10    2  9↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘   

Once every player has made a trade (or chose not to), the round is over. The cups stay where they ended, and the next 

round begins with dealing out 4 more cards to each player. This happens for 2 additional rounds.

THE LAST ROUND: After 3 rounds of dealing 4 cards out to each player, there should be no cards left to deal! 

(Remember, you gave each player 1 Gift card at the beginning of the game.) For the last round (4th), pick up and play your 

3 FUTURE cards. Place one card into each of your RESERVE, TRADE, and AUCTION areas (and none into the FUTURE 

area). Play out the remainder of this last round as usual.

END OF GAME: Pick up the cards from your RESERVE, any AUCTION cards remaining before you, and all TRADE 

cards you still have. There should be 13 cards in total. Using the Scoring Guide provided earlier, create sequences for 

scoring. Add the points from all of your sequences. To that total, add the number of coins in your player’s cup to create 

your Final Score! The player with the highest Final Score wins the game. If there is a tie, the person with the longest 

sequence of any kind wins. If there is still a tie, the tied players share the victory. If the players decided to play multiple 

games before totalling the score, proceed on to the next game.

OPTIONAL RULES FOR PLAY:  (I’m working on these.)

1. Add in the Joker cards, and add a Joker automa player to increase trading options and create longer sequences.

2. Allow team play. Allow table talk. When scoring, let team players combine cards and choose their best 13 cards.

3. Allow trade negotiations and contracts between players for more complex card trading.

FEEDBACK?: Have any suggestions or feedback? Do you want my rules to the Optional Rules for Play? 

Please contact me (Jay Schindler) at jayvs2@comcast.net. This game is still a work in progress!

© Jay Schindler, 2022
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A Ternary Hamming Code in a Magic Trick

Ricardo Teixeira

April 2022

For the Ternary Hamming Code trick, a magician is able to identify a number from

1 to 80 that a volunteer chose even if he decides to lie about one piece of information. It

involves an error detection and correction algorithm, called Hamming Code (Hamming,

1950).

This ternary trick expands the binary version published on last Gathering for Gard-

ner Exchange Book (Teixeira, 2018), where the volunteer could only pick a number

from 1 to 15. Tricks with Hamming Code are common on the literature, for instance

(Ehrenborg, 2006; Mateer, 2013; Teixeira, 2017), but this is the very first trick using

a ternary version of Hamming Code. This trick was first presented during the 2018

MOVES conference, and the following description resembles (Teixeira & Park, 2020).

The Trick

Description: A volunteer thinks of a number from 1 to 80, he also selects a color

from the rainbow (7 options). Then, the magician shows 7 colored cards with several

numbers for the volunteer to say whether he sees his number or not, the volunteer

lies on the card of his chosen color. The magician is able to find on which color the

volunteer had lied, and then tell the chosen number.

Material: Copy and cut cards on appendix, if you have crayons you could color the

cards accordingly. You could use actual fidget spinners of cut the ones on the appendix.

Preparation: Put the cards in order (red, orange, yellow, green, blue, magenta, purple).

Practice how to check the options for ternary matching (see instructions below).

Performance: Gisele, the magician, will read Arthur’s mind.

1. Gisele asks Arthur to pick a number between 1 and 80, and one of the colors of

the rainbow (red, orange, yellow, green, blue, indigo or violet);

2. Gisele explains that Arthur has to say whether he can see his chosen number on

each of the cards she shows. If the number appears, he has to say which color

the number has on the card (black or red);

3. But Gisele also explains that Arthur should tell a lie on the card having the color

he had chosen. The lie could be of any type: lying whether the number is on the

card or not, or even lying about the color that the number has on that card;

4. For every time he says “red” for a card, Gisele lays the fidget spinner (see ap-

pendix) with its red circle pointing up. If Arthur says the number is “black” on

a certain card, Gisele lays the fidget spinner with its black circle pointing up.
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Finally, if he says that number is not on the card, she lays the fidget spinner with

its white circle pointing up;

5. She arranges the fidget spinners side-by-side from left to right;

6. Once all seven cards are dealt, she looks at the fidget spinners and she can tell in

which color the lie happened, which type of lie was told, and which number was

selected.

Trick: Trick is based on the ternary extension of the Hamming Code. The first four

cards resemble a ternary-digit trick with numbers 1 to 80. Having the color red means

the correspondent position has digit 1, color black means that position has digit 2,

while if the number does not appear (fidget spinner has white circle pointing up), then

the correspondent position would be zero. If there were no lies allowed, then we’d only

need the first four cards. Simply, we would add the top left number on each color (red

or black) for the corresponding cards in which the volunteer claims to see the number.

Summary:

• Don’t see the number (color is white) = 0.

• The number is red = 1.

• The number is black = 2.

However, a lie was told and we are also trying to discover where the lie happened,

and which type of lie it was.

We use the following system: if no lie was told, then the result would be that the 7

positions would satisfy the following relationships.

•
(

position2 + position3 + position4

)

= position5 (mod 3)

•
(

position1 + position3 + position4

)

= position6 (mod 3)

•
(

position1 + position2 + position4

)

= position7 (mod 3)

The first four cards will serve to compute the chosen number by determining what

is the ternary expansion of the chosen number.

The last three cards are the “checking digits”.

During the trick, for each of the checking positions (positions 5, 6 and 7), the

magician needs to mentally compute the discrepancy:

• Discrepancy5 =
(

position2 + position3 + position4

)

− position5 (mod 3)

• Discrepancy6 =
(

position1 + position3 + position4

)

− position6 (mod 3)

• Discrepancy7 =
(

position1 + position2 + position4

)

− position7 (mod 3)

And while displaying the fidget spinners for each position, if a discrepancy is de-

tected, then:

• If discrepancy is 1: let the fidget spinners be displayed a little higher than others

(in such way that the magician can see, but it would not call the audience’s

attention);

• If discrepancy is 2: let the fidget spinners be displayed a little lower than others.

According to the number of discrepancies, the position of the lie can be determined

by similar analysis as the binary case (?). Once the position of the lie is identified, the

sum of the value of the discrepancies and the value represented by the lie (the color of

the fidget spinner: white=0, red=1, black=2) will identify the type of lie.

2
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To find the position of the lie:

There are discrepancies on: Then lie was on:

5 5

6 6

7 7

5 and 6 3

5 and 7 2

6 and 7 1

5, 6 and 7 4

Once the position of the lie is known:

• If there was only one discrepancy: the corresponding card is the lie, and the

actual value of the card is supposed to the value of the discrepancy added to the

lie-value (the value that corresponds to the fidget spinner’s color) (mod 3).

• If there were more than one discrepancy, then they all have the same value (1 or

2):

– the value of each discrepancy and the lie-value adds up to three: then the

person lied about the color; otherwise

* if the lie-value is not zero: the true value is zero;

* if the lie-value is zero: the true value is “3 minus discrepancy”.

Explanation: It is based on the theory developed in the exercises.

Hint: Practice the error recognition. At first, it may take you a while to figure out the

position of the lie and its type. Onde identified, fix the lie, before telling the chosen

number.

Examples

Example 1: Suppose that the chosen number is 37, and the chosen color is magenta

(the sixth card).
Card 1 Card 2 Card 3 Card 4 Card 5 Card 6 Card 7

Yes, Red Yes, Red No Yes, Red Yes, Black Yes, Red (lie) No

1 1 0 1 2 1 0

• Discrepancy5 =
(

position2 + position3 + position4

)

− position5 (mod 3) = 1+
0+1−2 = 0 (no discrepancy)

• Discrepancy6 =
(

position1 + position3 + position4

)

− position6 (mod 3) = 1+
0+1−1 = 1 (discrepancy)

• Discrepancy7 =
(

position1 + position2 + position4

)

− position7 (mod 3) = 1+
1+1−0 = 3 = 0 (mod 3) (no discrepancy)

Since, there is only one discrepancy, then that’s where the lie is. The color of that

card was supposed to be 1+ 1 (the actual value plus the value of the discrepancy),

hence color 2 (black). The chosen number is 1 × 33 + 1 × 32 + 0 × 31 + 1 × 30 =
27+9+0+1 = 37.

Example 2: Suppose that the chosen number is 70, and the chosen color is orange.

3
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Card 1 Card 2 Card 3 Card 4 Card 5 Card 6 Card 7

Yes, Black No (lie) Yes, Black Yes, Red Yes, Red Yes, Black Yes, Red

2 0 2 1 1 2 1

• Discrepancy5 =
(

position2 + position3 + position4

)

− position5 (mod 3) = 0+
2+1−1 = 2 (discrepancy)

• Discrepancy6 =
(

position1 + position3 + position4

)

− position6 (mod 3) = 2+
2+1−2 = 3 = 0 (mod 3) (no discrepancy)

• Discrepancy7 =
(

position1 + position2 + position4

)

− position7 (mod 3) = 2+
0+1−1 = 2 (discrepancy)

Since, checking digits 1 and 3 show discrepancy, the lie is on the second card

(orange). Since he told 0, the correct value was ”3 minus discrepancy”: 3− 2 = 1

(red). The chosen number is 2×33 +1×32 +2×31 +1×30 = 54+9+6+1 = 70.

Example 3: Suppose that the chosen number is 16, and the chosen color is red (the

first card).
Card 1 Card 2 Card 3 Card 4 Card 5 Card 6 Card 7

Yes, Black (lie) Yes, Red Yes, Black Yes, Red Yes, Red No Yes, Black

2 1 2 1 1 0 2

• Discrepancy5 =
(

position2 + position3 + position4

)

− position5 (mod 3) = 1+
2+1−1 = 3 = 0 (mod 3) (no discrepancy)

• Discrepancy6 =
(

position1 + position3 + position4

)

− position6 (mod 3) = 2+
2+1−0 = 5 = 2 (mod 3) (discrepancy)

• Discrepancy7 =
(

position1 + position2 + position4

)

− position7 (mod 3) = 2+
1+1−2 = 2 (discrepancy)

Since, checking digits 2 and 3 show discrepancy, the lie is on the first card (red).

Since the value of the discrepancy is 2 and he told 2, the correct value was ”3 minus

discrepancy”: 2−2 = 0 (white). The chosen number is 0×33 +1×32 +2×31 +1×

30 = 0+9+6+1 = 16.
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Ternary Hamming Fidget Spinners
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The Law of the Third

Adam Atkinson (ghira@mistral.co.uk), G4G14, April 2022

The Law of the Third may be my second-favourite gambling myth. It’s a distant second, since it’s not 

remotely as good as the Samaritani Formula (described at a previous G4G), but it seems to turn up in 

more countries and languages, which means there’s more chance G4G attendees may run into it or its 

victims. In French it's called “la loi du tiers”, in German “Zwei-Drittel-Gesetz” (where the name has 

"two thirds" in it) and in Italian it's "la legge del terzo". I'd love to hear about sightings in other countries

and languages.

It’s a reasonably interesting example of pseudomathematics. I run into it, or am asked about it, at 

intervals of several years, and have been since my first encounter with the Samaritani Formula 20+ years

ago. Sometime people ask me how the Law of the Third works (It doesn’t!), or where the trick is, or 

they are incredulous that I think the Samaritani Formula is a myth and say “Next you’ll be telling me the

Law of the Third is a myth!”. Yes, I suppose I shall!

What exactly does the Law of the Third say? Well, this isn’t entirely clear since the people who spread it

don’t like to be, or are incapable of being, terribly clear or specific. 

You will probably find two main variants of the LOTT. 

(i) If you draw one item from n, n times, n/3 items will fail to appear.

(ii) If you draw one item from n, n times, n/3 items will fail to appear, n/3 will appear once, n/3 will 

appear twice.

If someone says one of these in exactly these terms, they are implicitly saying that draws are not 

independent. So your die / roulette wheel etc. must contain sensors, memory, gyroscopes, motors. 

Nanotechnology or magic may be involved.

And it will be claimed that this either is a method for making money playing roulette (or lotteries, or 

similar), or that it is a mathematical principle which allows one to find a method for etc. etc. To be fair, 

this is the bit that’s a myth. Without too much effort, we can state a version of the LOTT which is “true 

but irrelevant” in that it’s a true statement that does NOT allow us to win money playing roulette. In 

much the same way that the Samaritani Formula can be expressed in a way which is true but irrelevant.

“n/3 items will” may be stated as exactly n/3, or at most, at least, approximately, on average, … "at 

most" "at least" and "approximately" are all false in any reasonable model of the universe. "often 

approximately" and "on average" are more or less true but irrelevant.

How do they say you can make money using this? They seem not to want to be very clear about this. 

Perhaps so they can sell you worthless software, books or consultancy services, or so if you can’t make 

it work they can claim you weren’t using it properly. The details don’t really matter, since it can’t 

possibly work (in any plausible model of the universe). It’s a bit like someone saying they’ve found two 

odd integers whose sum is odd. No, they have not. There’s no point checking particular examples: the 

1
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Tales of Wild Dice

J. Buhler, A. Gamst, A. Hales*

Martin Gardner played a large role in popularizing nontransitive dice, starting
with his December, 1970, column in which he focused on dice due to Efron. An-
other example, due to Moon and Moser [7], is pictured below. For us, dice are
lists (with repetition allowed) of equally likely integer outcomes of a “roll,” and we
write the Moon/Moser dice as

R = [2, 6, 7], G = [1, 5, 9], B = [3, 4, 8].

(If you wonder what’s on the hidden faces, then we’d tell you that each face is
identical to its antipodal face, so that we should have written, e.g., R = [22, 62, 72];
however, this die is equivalent to the simpler form above.)

In addition to being nontransitive (R is higher than G, on average, G is higher
than B, and yet B is higher than R), these dice have an even stranger property: the
triple R[2], G[2], B[2] is also a nontransitive cycle, but in the opposite direction! (The
superscript on R[2] indicates the die whose roll is the sum of two independent rolls
of R.) To our knowledge, these curious facts were first noticed by Tom Leighton
around 1990, when he was working on notes for a course at MIT (for an amusing
discussion of swindles based on these dice, see section 17.3 in the book [6] that
grew out of these notes). This idea also appeared in a paper by Allen Schwenk [8],
whose title, Beware Geeks bearing Grifts, is hard to beat.

Ron Graham asked how far these curious properties could be pushed. He
showed that much more exotic outcomes were possible, and his effervescent (and,
OK, insistent) personality led to two joint papers: one [3] showing how to produce
arbitrary tournaments, in a sense that will be made precise below, and another [2]
that shows how to fix a fascinating gap that arises when one tries to argue that
these examples are actually explicit. This is an overview of some of the results
and techniques, and our real goal is to entice you into reading those papers! We
are deeply grateful for Ron’s mathematical and non-mathematical friendship, his
insights, and the extraordinary opportunity to collaborate with him.

R G B

*jpb@reed.edu, acgamst@ucsd.edu, awh@math.ucla.edu

1

MATH | 77

Dice

For us, a die (plural: dice) is a finite list of equally likely outcomes (rolls). Dice can
be added or multiplied by constants; e.g.,

B + R = [5, 6, 9, 103, 11, 14, 15], 2G = [2, 10, 18]

B − R = [− 4,−32,−2, 12, 22, 6], G[2] = [2, 62, 103, 142, 18].

Note that multiplying a roll by 2 is a very different from adding 2 independent
rolls. Bracketed exponents indicate repeated addition, and exponents on the values
indicate multiplicity (repetition).

Given a set of k dice, we are interested in the results of comparing all pairs of
the above dice when each is rolled n times and the results are added. For the RGB

triple of dice we want to know the 3 pairwise comparisons from the set {R[n], G[n],
B[n]}, for all n ≥ 1. The results are summarized in the figure below for n ≤ 100. For
each n, we label the edges of a triangle whose vertices are the dice with an arrow
that points from the winner to the loser. Three different “tournament results”
occur. For a few small n, they are nontransitive cycles; for a few other small n, and
apparently all n ≥ 9, the result is the same as for n = 3, i.e., R beats both G and B,
and and G beats B.

R B

G

n = 1, 4

R B

G

n = 2, 5, 8

R B

G

n = 3, 6, 7, 9, . . . , 100

This means, for n = 1, that (loosely speaking) R is “better” than G, G is better
than B and yet B is better than R. This is easy to check; e.g., looking at the list
for B − R above, we see that 5 of the 9 outcomes have B winning, so B will beat
R more often than not. For the RGB dice, nontransitivity for n = 1 is perhaps a
bit surprising, but the fact that for (RGB)[2] case (i.e., R[2],G[2],B[2]) the tournament
is a nontransitive cycle in the reverse direction is doubly surprising, and the fact
that (RGB)[3] is neither of the nontransitive cycles is perhaps triply surprising.
For the nth powers (as we will call them) for n ≥ 9 the outcome is always the
same tournament, mentioned above. As Schwenk’s title hints, these properties
offer numerous opportunities for swindles (a.k.a. grifts), at least if wagers, n, and
the gradual emergence of the full situation are carefully managed.

Our primary goal in the next section is to construct sets of k dice D = {D1, . . . , Dk}

that exhibit vastly more deranged properties.
For the RGB dice, all of the pairwise comparisons seem fair because the means

(averages) of the compared dice are equal. Indeed, if the means were unequal,
well-known results from Statistics 101 show that, at least when larger powers are

2
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taken, dice with higher means will win, in the long run. In other words, for the
sake of finding counterintuitive examples it suffices to consider only sets of dice
that all have the same mean.

There is an interesting higher order grift that might arise if the players are
mathematicians. Imagine that you and an opponent play this game repeatedly
(perhaps for the sake of speed and magnifying the small winning margins as n

increases, letting a computer roll the dice, of course using a fair random number
generator). You spar over who chooses the first die, and what n will be, and after
a while you both understand what’s going on, e.g., understand the above figure
whether or not you cop to that knowledge to your opponent. The size of the bets
has been steadily increasing.

At one point, your opponent offers you the following game. She names an n,
you pick whether to chose first or second, and then, rather than the grubby rolling
of dice and doing arithmetic, or even simulating that using a computer, it is agreed
that whoever chooses the first die will win if they can give a reasonably concise
proof that they win (in the probabilistic sense of having a greater probability of
rolling a higher number). If you’ve taken Probability 301 then you know that
the computation comes down to comparing the median of the difference of nth
powers of two of the RGB dice to the mean, which is 0. As n gets large, the
median and mean are close (by the Central Limit Theorem), but their difference is
governed by the “skewness” of the distribution (roughly, which way it leans away
from being a symmetric normal distribution). This primarily depends on the third
moment

∑
Pr(X = x)x3 where X is the difference of the nth powers of two of the

dice. Moreover, you dimly recall that the winning margin goes to 0 as a function of
n something like c/

√
n. Making the choice, and giving a proof, is trivial for n ≤ 8

and is easy for large n because of the theorem below, which you will have to cite.
The stakes are of course tripled, and since you know the full story and have a sure
thing, you accept.

Your opponent says that n will be 1024. Which, in case you are counting (and
use American terminology) is one septillion. This is a bit unnerving, but of course
you know to choose R. Your proof begins by quoting the following theorem, which
you cleverly stored on your phone during the break.

Theorem 1. Let X be a die (an integer-valued random variable) with span 1 and mean 0.
Then for n going to infinity,

Pr(X > 0) − Pr(X < 0) =
c

√
n
+ o

(

1
√
n

)

, c =
−µ3(X)

3
√

2πµ2(X)
.

You (tediously) continue your proof by explaining that the “little-oh” term
o(1/

√
n) means that for all positive ε there is an n0 = n0(ε) such that the term

is less than ε/
√
n for n ≥ n0. And that the jth central moment of a die X is

µj(X) =
∑

x

Pr(X = x) xj.

3
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Finally, the span of the (integer-valued) X is the largest m such that the values of X
are contained in a single congruence class a +mZ modulo m. Any element of the
congruence class is called the shift of the die. For instance the values of G, namely,
1, 5, and 9, are all 1 mod 4 and contained in the congruence class 1+ 4Z modulo 4;
moreover, this is clearly the largest possible m with that property, since two of the
rolls differ by 4, so the span of G is 4. The shift is only defined modulo m, so the
shift could be said to be 5, 1, or −3. However, all of the pairwise differences of the
three dice have values that differ by 1, so their span is 1 and you are relieved that
the above theorem applies.

You finish by asserting that R is clearly going to win — the moments are easy
to compute, and the chosen n is (insanely) large.

You are horrified when your opponent points out that this is not a proof because
you haven’t yet named an explicit function n0(ε) and proved that it works. As
unlikely as it seems given the outcomes up to n = 100, you have not proven that
the third moment term dominates the error term for n = 1024.

You may now be in a spot of trouble (especially because the stakes have been
increasing). Stay tuned for useful remarks in the last section.

In the meantime, you might take some solace from having noticed that there
is an intuitive reason for the minus sign in front of the third moment term in the
Theorem—if the third moment is positive, then there has to be more probability
mass that is negative in order to balance the die so that its mean is 0. So the
median will be negative.

Tournaments

Let D = {D1, . . . , Dk} be a set of k dice. The result of all k(k − 1)/2 pairwise
comparisons between the k dice can be recorded as an antisymmetric matrix whose
the entry in row i and column j is 1 if Di beats Dj in the long run, 0 if the contest
is fair (i.e., a probabilisitic tie), or −1 if Dj beats Di in the long run. This matrix is a
tournament if there are no ties, and a partial tournament if there are ties. For instance,
the three tournaments in the figure above could be represented (less elegantly) as
the following matrices:





0 1 −1

−1 0 1

1 −1 0



 ,





0 −1 1

1 0 −1

1 1 0



 ,





0 1 1

−1 0 1

−1 −1 0



 .

If X is a die then, in order to cope with ties, and reduce the outcome to ±1 if there
is a winner (and 0 for a tie), it is convenient to define the “positivity” of a die X as
w(X) = sgn(Pr(X > 0) − Pr(X < 0)), where sgn(x), for a real number x, is 1, 0, or
−1 according to whether x is positive, zero, or negative.

Fundamentally, w(X) measures whether the median of X is above or below 0.
For a set D = {Di} of k dice, define the tournament on their nth powers setting the

4
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element in the ith row and jth column to be

Tn(D)ij = w(D
[n]

i −D
[n]

j ).

(This is only a partial tournament if some of the off-diagonal entries are 0.)
Suppose that there are k = 3 dice. Then there are 3 pairwise contests of interest,

and 8 = 23 possible ways for those contests to be decided (ignoring ties), and
therefore 8 possible tournaments. Only 3 of the 8 possible tournaments showed up
in the contests between the nth powers of R,G, and B. Wouldn’t it be cool, or at
least more nontransitive, if there was another set of dice A,B,C such that all 8 of
the possible tournaments occurred as a “dominance tournament” on A[n], B[n], and
C[n], for some value of n?

The next theorem says that such a set exists. Worse, it says that such a set that
realizes all possible k-person tournaments exists for any k > 3. Worse yet, there
will be no “limiting tournament” as in the case of the RGB dice (i.e., a tournament
that is the result for all sufficiently n), because the dice are so exquisitely balanced
that each tournament not only occurs, but occurs infinitely often.

Theorem 2. For every k > 2 there is a set of k dice {Di} such that for any k×k tournament
matrix T on k players there are infinitely many n such that T = Tn(D).

A proof can be found in [3]. For the sake of giving a sense of what is going on,
we consider the example of k = 5 dice.

First, there are 210 = 1024 possible tournaments (!). The 10 edges of the complete
graph on 5 dice (illustrated below) can be oriented in 1024 ways, and each of those
tournaments on D = {Di} can be realized as the tournament graph on the nth
powers, for infinitely many n.

This sounds like a tall order. Curiously, it turns out that our only recourse is to
go back to Theorem 1 and look at the omitted case: dice with spans larger than 1.
Also it turns out that the third moment term is just an annoyance, and it simplifies
things to just require that the third moment is always 0.

Suppose that Di is a collection of k dice that have mean and third moment equal
to 0, with shifts ai, spans mi respectively. It isn’t hard to show that mean and third

moment of D
[n]

i are 0, and its shift and span are nai and and mi. And to show that

5
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the span of a sum of two die is the gcd of their spans, and the shift of the sum is
the sum of the shifts.

If x is a real number, its fractional part, written {x}, is x minus the largest integer
less than or equal to x. It is convenient, for the sake of stating the improved version
of Theorem 1, to define

〈x〉 =











1 if 0 < {x} < 1/2

−1 if 1/2 < {x} < 1

0 otherwise.

Note that the “otherwise” case occurs precisely when x is an integer or half-integer.
Carefully generalizing Theorem 1 for spans larger than 1 leads to a very concrete
description of the (matrix of) tournaments Tn(D) for sets of dice {Di} that that have
µ1 = µ3 = 0, at least for large enough n.

Theorem 3. Suppose that Di are k dice with mean and third moment equal to 0, and with
shifts ai and spans mi. Define

d
[n]
ij =

n(ai − aj)

gcd(mi,mj)
.

Then the ij entry of the tournament matrix Tn(D) is

Tn(D)ij = sgn

(

c 〈d[n]
ij 〉√
n

+ o

(

1√
n

)

)

, c = 1/(3
√
2π).

Note that if n is large enough the argument of sgn has the same sign as its 〈 〉
term, unless that term is 0.

This shows that we can compute tournaments matrices for large n once we
know the shifts and signs, but still begs the question of how we can specify the
Di in any straightforward and general way. The following Lemma gives a very
practical answer!

Lemma 1. Given a positive integer m and any integer a there is a die X with shift a, span
m, mean 0, and third moment 0.

If you guess to look at what you can do if X has only 3 values (with repeti-
tions allowed), the proof is a rather unenlightening exercise in high school algebra,
though it can be made more appealing by using some simple linear algebra on 2×3

matrices. We also expect that the only chance for more elegant dice (fewer repeats)
is to use more values.

Via this lemma, the following table specifies five dice with mean and third
moment 0, with the indicated shifts and spans.

6
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ai 24 23 22 21 20

mi 25 29 212 214 215

Our goal is to prove Theorem 2 which, loosely speaking, asserts the existence of
dice that are so wild that their powers have all possible tournaments. To do this we
have to show that every tournament matrix T on 5 contestants is of the form Tn(D),
for the set D just described, and some positive integer n.

Once all of the results are unraveled, this comes down to showing that the 10-
tuple v of all (ai − aj)/gcd(mi,mj) from the above table satisfies the conclusion of
the following Lemma, which is something of a “mod-2 equidistribution” law. In
our application of the lemma, K is 10, since v has 10 components. For the sake of
stating the Lemma, we let HK be the set of all elements x in [0, 1]K which have no
coordinate xi equal to 0, 1/2 or 1. This is a disjoint union of 2K open cubes C of side
length 1/2. The Lemma asserts that for every C the integer multiples {nv} of v in
10-space intersect some translate u+ C of the half-cube C by an integer 10-tuple u.

Lemma 2. With the above notation, there is a vector v such that for every open cube C

in HK there are infinitely many integers n such that 〈nv〉 lies in C, where 〈u〉 denotes the
result of applying the bracket operator to every component of u.

The reader might enjoy either or both of the (nontrivial!) exercises of proving
the Lemma, or of showing that the 10-dimensional v arising from the 5 dice above
satisfies the Lemma.

This finishes the outline of the proof of Theorem 2.

Comments.

A number of remarks are in order.

#1: Linguistically, “intransitive” (meaning definitely not transitive) is probably a
better term than “nontransitive” (meaning not necessarily transitive), but we stick
with the latter as it has become thoroughly ingrained in the mathematical literature
on the topic.

#2: Although there may have been related ideas that arose earlier, the specific
idea of nontransitive dice seems to have first appeared in work of Steinhaus and
Trybula [9] in the late 1950s. A number of interesting references to results on
nontransitive dice can be found in the bibliographies of the more recent papers in
the bibliography below. Also, there is a lot of information online, including, of
course, the Wikipedia article on Intransitive Dice as well as web pages by James
Grime, Oskar Deventer, and no doubt others.

7
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#3: In aiming at tournaments, we skipped over the interesting case of n-cycles. The
method of construction of the 5× 5 matrix (extracted verbatim from [1])

7 8 9 10 25

4 5 6 23 24

2 3 20 21 22

1 16 17 18 19

11 12 13 14 15

is clear. A bit of careful thinking about the dice formed from its rows should
convince you that it is easy to construct nontransitive cycles of any length. Indeed,
rows of this matrix form a nontransitive cycle of length 5: each row is better than
the one below it, and the bottom is better than the top! One question that has been
around since the 1960s is: what is the highest possible success probability around
the cycle? I.e., given n, what is the largest p such that there is a nontransitive
n-cycle with Pr(Di+1 > Di) ≥ p for all i? A definitive treatment appeared in the
Monthly recently [5], and it confirms that the largest p is

p = 1−
1

4 cos2(π/(n+ 2))
=

3

4
−O(1/n2).

(Strictly speaking, for dice in our sense, this is the supremum of all such p, but
this value can actually be attained if irrational probabilities are allowed.) In other
words, the best winning probability around a cycle approaches 3/4 from below, as
n goes to infinity.

#4: The dice in the proofs might not be aesthetically pleasing or “practical” since
our goal was only to push the envelope on what was known to be possible. There
are lots of opportunities to do better. One obvious open question is to find a
reasonable set of 3 dice that realize all 8 tournaments. One measure of the size of a
set of dice is the least common multiple L of the spans of its dice (though we think
that this is not exactly the same as “practical”). For n = 3, the smallest possible
value of L is 10 and, perhaps slightly surprisingly, a set of 3 dice exist with L = 10.
For n = 4, easy arguments show that the optimal L satisfies 64 < L ≤ 512 (the
upper bound coming from the construction above). In fact L = 68 is possible (and
almost certainly best possible). This seems to suggest that wild dice exist more or
less as soon as there is any room for them to exist.

#5: A full proof of Theorem 3 can be found in [3] where the probability in question
is initially expressed as a contour integral.

#6: Explicit estimates error estimates for Theorem 3, i.e., with overt functions n0(ε)

that you might need (in the circumstances mentioned above), can be found in [2].
The quest for explicit error estimates arises in number theory, probability, and else-
where. In the case of [2] (first order lattice Edgeworth error estimates, in the lingo)
common wisdom was probably that precise estimates were hard to find, likely to

8
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be uninteresting because they would be unrealistically large, and not terribly useful
because computers can compute values for large n, leaving no doubt as to what ac-
tually happens in, say, dice tournaments. Although a variety of ideas were needed,
the estimates in [2] turned out to be unexpectedly good at giving realistic estimates
even in fairly pathological cases. Be that as it may, computations do give a good
sense of what is going on, and you sort of have to be a mathematician (at least at
heart) to enjoy this quest for explicit estimates.
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What is Ethnomathematics, and
How Can it Help Solve a Math

Problem?
3/10/2022

by Tracy Drinkwater

Synopsis: Brazilian mathematician Ubiratan D'Ambrosio coined the term

"Ethnomathematics" in 1987. Decades later, we often still see math as separate from

culture. How can D'Ambrosio's approach help us change how we teach students who

have felt no connection between their lives and the subject of math?

I have loved math since I was a young child. I’ve always been drawn to puzzles, games

and LEGO® sets. I took for granted that these activities were inherently mathematical,

and that much of my fluency with math was due to my experiences within my own home

and family culture. For most of my life, and especially as a math educator, I have been

fascinated by other cultures and how they value and teach mathematics. In my work I

have collected stories, videos, and articles about math from around the world and

through the centuries. I’ve been fascinated by how mathematics has been developed

throughout history.

Math is often considered a universal language and acultural. However, this can be

misleading, as math has been created and discovered to serve the needs of

communities. Various cultures throughout history and all over the world have developed

methods of counting and measuring. Each method was unique until more and more

cultures came into contact with one another through trade, migration, travel and

conquest. Communication then necessitated that communities use a common

vocabulary and methods. Some ideas were shared, while others were practically stolen

– and false credit was given to those who first published the theorems, rather than to



their original source. From the necessity for universal vocabulary to communicate

cross-culturally, mathematics came to be viewed as the foundation and universal

language for science, engineering and technology. In the process, it came to be viewed

as separate from the humanities and culture.

As a Seattle University Instructor teaching Math Methods for graduate students in the

Master in Teaching program, I discovered the article “What is ethnomathematics, and

how can it help children in schools?” by Ubiratan D'Ambrosio . I used this article to1

stimulate discussion in our Culturally and Linguistically Responsive Teaching (CLRT)

unit. D'Ambrosio, a Brazil mathematician, explains:

The term ethnomathematics is used to express the relationship between culture

and mathematics. The term requires a dynamic interpretation because it

describes concepts that are themselves neither rigid nor singular-namely, ethno

and mathematics (D'Ambrosio 1987). The term ethno describes "all of the

ingredients that make up the cultural identity of a group: language, codes, values,

jargon, beliefs, food and dress, habits, and physical traits." Mathematics

expresses a "broad view of mathematics which includes ciphering, arithmetic,

classifying, ordering, inferring, and modeling" (pp. 2-3). Many educators may be

unfamiliar with the term, yet a basic understanding of it allows teachers to expand

their mathematical perceptions and more effectively instruct their students.

And so it seems, by having separated math from culture, our American educational

system has implemented a procedural and acultural approach to teaching math. And e

have failed to reach and teach many of our students, especially those of color. Below is

a graph from the Seattle Times representing data for Washington State public school

students from before (2019) and during (2021) the COVID-19 pandemic. The data tells

the tragic story of how few students in the majority of categories are meeting or

exceeding standards in mathematics.2

2
Bazzaz, Dahlia. “Washington Students' Test Scores Drop Significantly in First Exams since Pandemic Began.” The Seattle Times,

The Seattle Times Company, 18 Jan. 2022.

https://www.seattletimes.com/education-lab/in-first-assessment-since-the-pandemic-began-washington-student-test-scores-drop-sig

nificantly/

1
D'Ambrosio, Ubiratan. “What is ethnomathematics, and how can it help children in schools?” Teaching Children Mathematics;

Reston; Feb 2001.

https://www.researchgate.net/publication/284702127_What_is_ethnomathematics_and_how_can_it_help_children_in_schools

www.seattlemathmuseum.org
2

We can see from the results of the most recent test scores in Washington State that we

have much work to do with all students, especially BIPOC (Black and Indigenous

People of Color) students or whose families are considered low income. Inequities were

already present pre-pandemic, and unfortunately the pandemic has exacerbated the

challenges of students in all categories.

Why are so many of these students needs’ not being met? We must work harder in our

society to inspire all children to learn math, and be willing to reconsider the methods

that our traditional education system uses do not work for so many of our students.

Students need to connect math to their daily lives, and to experience math hands-on

and in 3D. This typically requires in-person support that has been lacking throughout the

pandemic.

I know, as a former teacher in our public schools, it can seem like there is little time for

creative approaches like project based learning, and there are no available resources

for math related field trips. Teachers are pressured by standardized testing to teach

children to repeat specific procedures to get correct answers. Teaching for testing

leaves little room to encourage students to use other means to demonstrate an

understanding of mathematical concepts – methods such as discussing and arguing

why one answer is correct and another is not quite right, or using math to create art and

music or writing an essay to prove their mathematical knowledge. Standardized test

scores are useful to compare and track achievement, but are they the best way to

assess a child’s true learning? Or to motivate them to do better?

www.seattlemathmuseum.org
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To engage students, embrace their cultural assets, and inspire them to learn about

math, let’s examine D’Ambrosio’s call to action:

Mathematics is a compilation of progressive discoveries and inventions from

cultures around the world during the course of history. Its history and

ethnography form a wonderful mosaic of cultural contributions. Today, we too are

playing a part in the evolution of the discipline of mathematics. It is time for

educators to improve their understanding of the role that culture has played and

continues to play in shaping mathematical development. It is time for educators

to empower their students with this vital knowledge.3

What can we do to solve this challenging math problem? We can provide more

culturally responsive ways for students to approach and learn math. To do this we must

start with the belief that all children can learn math, and that positive emotional

experiences with math are a key to a student's motivation to learn.

At Seattle Universal Math Museum (SUMM) we aim to provide play-based math,

demonstrating the fun and creative nature of the subject, while giving students a

hands-on learning experience and access to the historical aspects of mathematics that

relate to their ancestries. With this knowledge and experience, students will be more

motivated to engage with math. Teachers and parents need to rise to the challenge and

be open to a broader approach in teaching, learning and the appreciation of the

diversity of the subject of mathematics.

For more information about SUMM, and how we plan to spark each and every person to

love math, please visit our website at www.seattlemathmuseum.org.

3
D'Ambrosio, Ubiratan. “What is ethnomathematics, and how can it help children in schools?” Teaching Children Mathematics;

Reston; Feb 2001.

https://www.researchgate.net/publication/284702127_What_is_ethnomathematics_and_how_can_it_help_children_in_schools

www.seattlemathmuseum.org
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The Art of  Destroying Flexagons 

Yossi Elran 

The Davidson Institute of  Science Education, The Weizmann Institute of  Science, Rehovot, Israel 

Flexagons are (usually) flat models, often made of  paper, that can be folded in certain 

ways to reveal additional faces besides the two that were originally the back and front of  the 

model. Flexing is the word used to describe the special paper folding manipulation that has to 

be done in order to reveal a new face. Flexagons were invented and studied by Arthur Stone 

and some prominent fellow math graduate students from Princeton University in 1939, 

popularised by Martin Gardner in 1956  and again in 1988 ,  and since studied by many 1 2

recreational mathematicians (c.f. references in Wikipedia ). Once constructed, flexagons are 3

beautiful objects, especially when their faces are colored, and flexing them is real fun and 

leads to some very interesting structures. 

Surprisingly enough, even destroying flexagons can be fun and artistic! We suggest 4 

different ways to artistically destroy flexagons, each with its own merit. Our exchange gift is a 

set of  4 flexagons strips, one for each demonstration. 

1. Cutting through the center of  flexagon leafs (recommended strip: tri-hexa-flexagon). 

Fold a tri-hexa-flexagon. Then, starting from the outside hinge of  a 2-leaf  pat,  make a 

cut through the center of  the leaves, traversing all the leaves until you return to the initial 

cutting point. The result is a trefoil knotted, 8 times half-folded Möbius strip. This is because 

the tri-hexa-flexagon is analogous to a 3 half-twisted Möbius strip . 4

 Gardner, Martin (December 1956). "Flexagons". Scientific American. Vol. 195 no. 6. pp. 162–1681

 Gardner, Martin (1988). Hexaflexagons and Other Mathematical Diversions: The First Scientific American 2

Book of  Puzzles and Games. University of  Chicago Press.

 https://en.wikipedia.org/wiki/Flexagon#Bibliography3

 Elran, Y., & Schwartz, A. (2019). 16. Should We Call Them Flexa-Bands? In The Mathematics of  Various 4

Entertaining Subjects (pp. 249–261). Princeton University Press.
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2. Cutting the corners and edges of  flexagon leafs (recommended strip: hexa-hexa-

flexagon). 

Fold a hexa-hexa-flexagon. Then, stack all the leaves into one stack. The stack should be 

18 leaves thick. Cut off  each of  the three corners of  the flexagon. After cutting each corner it 

is recommended to open the flexagon and see the patterns that you get. We could call these 

“holy flexagons”. Cutting off  the corners of  flexagons by just clipping the triangles’ vertices is 

recommended as it eases flexing later on. The resulting flexagon can be further artistically 

enhanced by cutting patterns along the flexagons edges as well 

 

3. A circular cut in a flexagon (recommended strip: tri-hexa-flexagon). 

MATH | 91

Fold a tri-hexa-flexagon. Then, stack all the leaves into one stack. The stack should be 9 

leaves thick. Make a circular cut, completely removing two of  the flexagon’s corners. Open up 

the result - it is a “flexa-frame”! 

 

4. Cutting the flexagon before folding it (recommended strip: truncated hexa-hexa-

flexagon). 

Fold a hexa-hexa-flexagon from the truncated hexa-hexa-flexagon strip. Make sure that 

you still fold along the lines, even though (obviously) there will now be overlaps between 

different coloured leaves. The resulting flexagon can be flexed as usual, but the colourful 

patterns are very beautiful and provide insight into the inner structure of  flexagons. 
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Can the Number of Pieces in a Rectangular Jigsaw Puzzle 

be a Multiple of the Number of Edge pieces? 

By D. Scott Hewitt 2/2/2022  

Scott496@comcast.net  

 

The short answer is yes. There are an infinite number of solutions. However, some interesting results 

appear in connection to this question. I occasionally do Jigsaw puzzles, and I usually work on the edge 

pieces first. That’s how I became interested in this topic. 

Note:  If you are new to jigsaws, there are quite a few options for doing Jigsaw puzzles. There are many 

available in stores or online. More choices are available online when you do an internet search for 

software. Some are free and some require the purchase of a license. I like the option of creating my own 

puzzles from jpg files, which some Jigsaw companies offer.  

Let’s start with some definitions and formulas: 

Let x = the number of pieces on the shorter side.   

let y = the number of pieces on the longer side.   

let e = the number of edge pieces. 

let f = the ratio of total pieces to edge pieces. 

Let d = y – x (the difference between the long side and the short side). 

Now let t = x y = total pieces. 

e = 2x + 2y – 4 (true for any rectangular jigsaw puzzle) 

f = 
끫룂끫뢤 

 

 

We are interested in positive integer solutions for f.  

We can assume that x > 1 because if x = 1 we just get a single row of pieces which is trivial. 

Before talking about solutions, we have a few theorems in order to hopefully eliminate some 

possibilities: Most of the theorems are fairly basic and the proofs are short. 

 

 

 

Theorem 1 is somewhat trivial and concerns jigsaw puzzles with only 2 rows of pieces. 

 

Theorem 1   If and only if x = 2 and y is any positive integer, then f = 1 and t = e 

Proof: t = 2y and e = 2*2 +2y -4 = 2y 

            So f =  
끫룂끫뢤 =  

2끫료2끫료 = 1, and every piece in the puzzle is an edge piece.  

Note: If x > 2, then of course t > e. 

 

Theorem 2   If x = 3, There is no solution for integer f. 

Proof: t = 3y, and f =  
끫룂끫뢤 =  

3끫료6+2끫료−4 =  
3끫료2끫료+2  

Since y ≥3, this fraction f takes on values on the interval [ 
98 , 

32) as y takes on values from 3 to ∞. 

The next possible integer value of f is 2, so there is no solution for x = 3. 

 

Theorem 3   If x = 4, there is no solution for integer f. 

Proof: t = 4y, and f =  
끫룂끫뢤 = 

4끫료2(4+끫료)−4 = 
4끫료2끫료+4 =  

2끫료끫료+2 

Since y ≥ 4, this fraction f takes on values on the interval [
 4 3 , 2) without reaching 2, as y takes on values 

from 4 to ∞. 
The next possible integer value of f is 2, so there is no solution for x = 4. 

 

Theorem 4   x and y cannot both be odd. 

Proof:     If x and y are both odd then t is odd. We have f = 
끫룂2끫룊+2끫료−4  

The numerator is odd and the denominator is even, so x and y both odd is not possible. 

 

 

 

 



Theorem 5     x and y cannot be equal, so square jigsaw puzzles are not possible with integer f. 

Proof: t = x2 

            f = 
끫룂끫뢤 = 

끫룊^24끫룊−4  

Case I 

In the case of an even square where x = 2m, we have 
4끫뢴^28끫뢴−4 = 

끫뢴^22끫뢴−1  

If this fraction is equivalent to an integer, then k(2m-1) = m2 

We have: m2 -2km+k = 0      so m = k+√끫뢰(끫뢰 − 1) 

For m to be an integer k(k-1) must be a perfect square.  

However, consecutive integers do not share any factors. Therefore, k and k-1 must be consecutive 

perfect squares which is impossible. 

Case II 

In the case where x = 2m + 1, we have f = 
4끫뢴2+4끫뢴+18끫뢴  , but this is also impossible since an even number 

cannot divide an odd number. Therefore, x and y cannot be equal. 

 

Theorem 6   y cannot be a multiple of x.  

Proof:   Suppose y = ax, then t = xy = ax2 

 e = 2(x+ax) – 4 or e = x(2+2a) – 4 

We now have f = 
끫룊∗끫룊∗끫뢜끫룊(2+2끫뢜)−4    and we know that x ≥ 5 from previous work. 

If x = 5 we have f  =  25끫뢜5(2+2끫뢜)−4 and a number of the form 25r or 5r cannot be divisible by a number of 

the form 5r - 4.  

If x = 6 we have f = 
36끫뢜6(2+2끫뢜)−4 and again, a number of the form 36r or 6r cannot be divisible by a 

number of the form 6r – 4 

 

For x ≥ 7 let us look at the general case f = 
끫룊∗끫룊∗끫뢜끫룊(2+2끫뢜)−4    The numerator is of the form xr  and the 

denominator is of the form xr – 4 . Numbers of the form xr – 4 can never divide numbers of the form xr 

with x ≥ 7. 

Therefore, for all x ≥ 5, f cannot be an integer. This proves that y cannot be a multiple of x. 

 

Now let us look at a condition that does yield solutions. Suppose x and y have a difference of 2. 

 

Theorem 7    If d = y - x = 2 there are an infinite number of solutions. 

 Proof:     If y - x = 2 then t = x(x+2) and e = 2x +2(x+2) – 4 = 4x  

We have f = 
끫룊(끫룊+2)4끫룊  = 

끫룊+24  and we can solve for any f. 

 

Example A:  Suppose we wish the number of edge pieces to be exactly half the total number of pieces. 

So, f is 2 and we have 
끫룊+24  = 2 

                             X+2 = 8 

                                X = 6         and therefore y =8 

t = 48 and e = 24 

 

 

 

Example B: suppose we wish f to be 3.  

We have 
끫룊+24  = 3 

X + 2 = 12 

X = 10   and therefore y = 12 giving us t = 120 and e = 40 

 

 

Example C: suppose we wish f to be 73. 

We have 
끫룊+24  = 73  

X + 2 = 292 

X = 290 and y =292 giving us t = 84680 and e = 1160 
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The following table gives a solution for f =2 through 20 where y - x = 2. Incidentally, these are also the 

jigsaws of smallest area with those f values. Other solutions exist for these f values when y – x  > 2. 

Table 1 

 

f = t/e x = width y = length t = total 

pieces 

e =  edge 

pieces 

2 6 8 48 24 

3 10 12 120 40 

4 14 16 224 56 

5 18 20 360 72 

6 22 24 528 88 

7 26 28 728 104 

8 30 32 960 120 

9 34 36 1224 136 

10 38 40 1520 152 

11 42 44 1848 168 

12 46 48 2208 184 

13 50 52 2600 200 

14 54 56 3024 216 

15 58 60 3480 232 

16 62 64 3968 248 

17 66 68 4488 264 

18 70 72 5040 280 

19 74 76 5624 296 

20 78 80 6240 312 
 

 

 

 

 

 

Table 2 gives the solutions for jigsaw puzzles of minimum area with consecutive x values where x = 

width.  Notice that when x is a prime such as 31 or 43, or when x is an odd square like 49; y is sometimes 

quite large compared to neighboring y values due to the more difficult task of finding a solution with 

integer f.  

 

 

Table 2 

 

X = 

width 

Y= 

length 

t = x y e 

= edge  

f = t/e 

5 12 60 30 2 

6 8 48 24 2 

7 30 210 70 3 

8 18 144 48 3 

9 14 126 42 3 

10 12 120 40 3 

11 24 264 66 4 

12 20 240 60 4 

13 132 1716 286 6 

14 16 224 56 4 

15 26 390 78 5 

16 42 672 112 6 

17 36 612 102 6 

18 20 360 72 5 

19 306 5814 646 9 

20 27 540 90 6 

21 38 798 114 7 

22 24 528 88 6 

23 48 1104 138 8 

24 44 1056 132 8 

25 92 2300 230 10 

26 28 728 104 7 

27 50 1350 150 9 

28 65 1820 182 10 

29 60 1740 174 10 

30 32 960 120 8 

31 870 26970 1798 15 

32 50 1600 160 10 

33 62 2046 186 11 

34 36 1224 136 9 

35 44 1540 154 10 

36 68 2448 204 12 

37 150 5550 370 15 
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38 40 1520 152 10 

39 74 2886 222 13 

40 57 2280 190 12 

41 84 3444 246 14 

42 44 1848 168 11 

43 1722 74046 3526 21 

44 90 3960 264 15 

45 86 3870 258 15 

46 48 2208 184 12 

47 96 4512 282 16 

48 92 4416 276 16 

49 282 13818 658 21 

50 52 2600 200 13 

 

From table 1 and table 2, we see that every x value greater than or equal to 5 yields at least one 

solution, and every f value greater than or equal to 2 yields multiple solutions. 

 

Tables 3 and 4 are just to show that perfect squares and cubes are possible for the number of edge 

pieces. 

 

Table 3 lists very specific cases where e is a perfect square and x ≤ 100. Although there appears to be an 

infinite number of solutions, there are only 5 solutions for x below or equal to 100. If we were to go a bit 

further, there are 18 solutions for x below 500. 

 

Table 3 

x y t = x y e f = t/e 

18 56 1008 144 7 

50 152 7600 400 19 

98 296 29008 784 37 

98 1472 144256 3136 46 

100 2352 235200 4900 48 

 

Table 4 lists cases where e is a perfect cube and x is less than 1000. 

Table 4 

x y t = x y e f = t/e 

54 56 3024 216 14 

162 704 114048 1728 66 

250 252 63000 1000 63 

686 688 471968 2744 172 

 

Triangular numbers are numbers of the form T(n) = 
끫뢶(끫뢶+1)2 . If we ask whether both x and y can be 

triangular numbers, the answer is yes; but solutions seem to be somewhat scarce. Table 5 gives the only 

8 solutions I could find with the restriction that both x and y are less than 50,000. I was unable to find a 

formula to calculate these directly. It’s interesting that both T88 and T168 show up twice. 

Table 5 

 

x y t=x*y e=edge f Triangular 

Index for 

x 

Triangular 

Index for 

y 

78 171 13338 494 27 T12 T18 

903 1378 1244334 4558 273 T42 T52 

1770 24310 43028700 52156 825 T59 T220 

2850 3916 11160600 13528 825 T75 T88 

3916 5253 20570748 18334 1122 T88 T102 

11325 14196 160769700 51038 3150 T150 T168 

14196 17578 249537288 63544 3927 T168 T187 

26106 31375 819075750 114958 7125 T228 T250 

 

 

Now let us examine differences between y and x. Using a computer program, I did a search and found 

solutions for every difference up to d = 250 with the exception of d = 1, 3, 4, and 6. 

Table 6 gives minimum solutions for all known consecutive values of d = y – x up to 25. 

Table 6 

d = y-x x = short 

side 

y = long 

side 

t = total 

pieces 

e = edge 

pieces 
f = 

끫룂끫뢤 

2 6 8 48 24 2 

5 9 14 126 42 3 

7 5 12 60 30 2 

8 12 20 240 60 4 

9 35 44 1540 154 10 

10 8 18 144 48 3 

11 15 26 390 78 5 

12 30 42 1260 140 9 

13 11 24 264 66 4 

14 18 32 576 96 6 

15 104 119 12376 442 28 

16 14 30 420 84 5 

17 21 38 798 114 7 

18 32 50 1600 160 10 
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19 17 36 612 102 6 

20 24 44 1056 132 8 

21 209 230 48070 874 55 

22 10 32 320 80 4 

23 7 30 210 70 3 

24 132 156 20592 572 36 

25 23 48 1104 138 8 

 

 

 

 

I call d values which do not yield a solution “difference outlaws”. 

Hypothesis(A): d = 1, 3, 4, and 6 are difference outlaws.    

Hypothesis(B): d = 1, 3, 4, and 6 are the only outlaws. Therefore, all other differences are possible. Some 

differences yield x values that are quite large. For example, d = 225 yields the solution x = 25199, y = 

25424, and f = 6328 with no smaller solution. 

If someone would like to work on hypothesis A or B, I can get you started: 

d = 1 → f =  
끫룊2+끫룊4끫룊−2 → x2 - 4xf +x + 2f = 0 

d= 3 → f =  
끫룊2+3끫룊4끫룊+2  → x2 - 4xf +3x – 2f = 0 

d = 4 → f = 
끫룊2+4끫룊4끫룊+4  → x2 - 4xf +4x – 4f = 0 

d = 6 → f = 
끫룊2+6끫룊4끫룊+8  → x2 - 4xf +6x – 8f = 0 

 

 

The fractions for f are equivalent to the Diophantine equations on the right that we would like to prove have 

no solution for x and f as positive integers. My feeling is that these 4 Diophantine equations probably have 

integer solutions but that the solutions involve negative integers. Incidentally, these equations represent 

hyperbolic curves. 

 

Let’s take a last look at one of the outlaws: d = 1. This looks like it may be easier than d = 3, 4, or 6. 

 

 

Theorem 8 

X and y cannot be consecutive integers. In other words, d≠ 1. 

Proof: Suppose d = 1, then we have f = 
끫룊(끫룊+1)4끫룊−2     

Suppose we treat this as a quadratic equation and solve it for x. We have  

  x^2 +(1-4f)x + 2f = 0 

Using the Quadratic Formula: x = 
(4끫뢦−1)± √(1−4끫뢦)2−8끫뢦2   

To have a solution, the discriminant must be a perfect square: (1-4f)2 – 8f = n^2 

We have 1 – 16f + 16f^2 = n^2 and n must be odd for x to be a positive integer. 

The left side of the equation can be written as 16(f2-f) +1 and this is equivalent to 8(2f2 -2f) +1 

This looks encouraging since all odd squares must be of the form 8n+1. In fact, all odd squares are of the 

form 8T + 1 where T is a triangular number of the form 
끫뢾(끫뢾+1)2  

The question now is: Can 2f2 -2f ever be a triangular number? 

If so, we have 2f2 -2f = 
끫뢾(끫뢾+1)2   

4f2 -4f – r(r+1) = 0 and we must again resort to the quadratic formula. 

f = 
(4 )± √42+16끫뢾(끫뢾−1)8  = 

4± 4√끫뢾(끫뢾+1)+18  

Looking at this fraction, r(r+1) must be equivalent to 8T = 8 
끫룆(끫룆+1)2  = 4v(v+1), and we are missing a factor 

of 4. We have encountered a contradiction, so jigsaw puzzles with integer f are not possible if y – x = 1. 

 

Feel free to send me an email if you have a comment about my paper or if you have made progress on 

Hypothesis A or B that you would like to share. 

 

In conclusion, I would like to wish you an enjoyable time working on your next jigsaw puzzle, regardless of 

whether or not the number of pieces is a multiple of the number of edge pieces! Have fun! 
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Open problem collection

Peter Kagey

January 16, 2020

This is a catalog of open problems that I began in late 2017 to keep tabs on different problems and ideas

I had been thinking about.

Each problem consists of an introduction, a figure which illustrates an example, a question, and a list

related questions. Some problems also have references which refer to other problems, to the OEIS, or to

other web references.

1 Rating

Each problem is rated both in terms of how difficult and how interesting I think the problem is.

1.1 Difficulty

The difficulty score follows the convention of ski trail difficulty ratings.

Easiest The problem should be solvable with a modest amount of effort.

Moderate Significant progress should be possible with moderate effort.

Difficult Significant progress will be difficult or take substantial insight.

Most difficult The problem may be intractable, but special cases may be solvable.

1.2 Interest

The interest rating follows a four-point scale. Each roughly describes what quartile I think it belongs in with

respect to my interest in it.

Least interesting These problems have an interesting idea, but may feel contrived.

More interesting Either a somewhat complicated or somewhat superficial question.

Very interesting Problems that are particularly natural or simple or cute.

Most interesting These are the problems that I care the most about.

For full set of problems:

https://www.gathering4gardner.org/g4g14gift/G4G14-PeterKagey-OpenishProblems.pdf
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Problem 1.

Suppose you are given an n × m grid, and I then think of a rectangle with its corners on grid points. I
then ask you to “black out” as many of the gridpoints as possible, in such a way that you can still guess my
rectangle after I tell you all of the non-blacked out vertices that its corners lie on.

Figure 1: An example of an invalid “black out” for an 4× 3 grid. The blue rectangle and the red rectangle
have the same presentation, namely the gridpoint inside the yellow circle.

Question. How many vertices may be crossed out such that every rectangle can still be uniquely identified?

Related.

1. What if the interior of the rectangle is lit up instead?

2. What if all gridpoints that instersect the perimeter are lit up?

3. What if the rectangles must be square?

4. What if parallelograms are used instead of rectangles?

5. What if the rectangles must be horizontal, vertical, or 45◦ diagonal?

6. What if this is done on a triangular grid with equilateral triangles?

7. What if this is done in more dimensions (e.g. with a rectangular prism or tetrahedron?)

References.

https://math.stackexchange.com/q/2465571/121988
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Problem 2.

Let G be some n×m grid as in Figure 1, where each cell has two opposite diagonals connected (uniformly
at random). Choose a cell (also uniformly at random), and consider the component that goes through this
cell.

Figure 1: An example of a 6× 10 grid, where a component of size 12 has been selected.

Question. What is the expected size of the selected component?

Related.

1. What is the expected number of components in an n×m grid?

2. How long is the longest component expected to be?

3. How does this change if the grid on a torus/cylinder/Möbius strip/etc?
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Problem 3.

Peter Winkler’s Coins-in-a-Row game works as following:

On a table is a row of fifty coins, of various denominations. Alice picks a coin from one of the
ends and puts it in her pocket; then Bob chooses a coin from one of the (remaining) ends, and
the alternation continues until Bob pockets the last coin.

Let X1, X2, . . . , Xn be independent and identically distributed according to some probability distribution.

2 6 0 3 9 1 2

Figure 1: An instance of a seven coin game on a uniform distribution of {0, 1, . . . , 9}. The first player has
a strategy that allows her to win by one point.

Question. For some fixed ω, what is the expected first player’s score of Peter Winkler’s Coins-in-a-Row game
when played with X1(ω), X2(ω), . . . , X3(ω) where both players are using a min-max strategy?

Note. Let
e = E[X2 +X4 + . . .+X2n] and o = E[X1 +X2 + . . .+X2n−1]

When played with 2n coins, the first player’s score is bounded below by max(e, o)−min(e, o) by the strategy
outlined by Peter Winkler.

Trivially the first player’s score is bounded above by the expected value of the n largest coins minus the
expected value of the n smallest coins.

Related.

1. If all possible n-coin games are played with coins marked 0 and 1, how many games exist where both
players have a strategy to tie.

2. How does this change when played according to the (fair) Thue-Morse sequence?

3. What if the players are cooperating to help the first player make as much as possible (with perfect
logic)?

4. What is both players are using the greedy algorithm?

5. What if one player uses the greedy algorithm and the other uses min-max? (i.e. What is the expected
value of the score improvement when using the min-max strategy?)

6. What if one player selects a coin uniformly at random, and the other player uses one of the above
strategies?

3
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Problem 4.

Let a “popsicle stick weave” be a configuration of lines segments, called “sticks”, such that

(1) when you lift up any stick by the end, the structure supports itself (is in tension)

(2) the removal of any stick results in a configuration that no longer supports itself.

Figure 1: The unique example of a 4 stick crossing (up to reflection)

Figure 2: Four of five (?) known examples of five-stick crossings. Perhaps the fourth example shouldn’t
count, because shortening the blue stick to avoid the blue-red crossing results in a valid configuration (the
remaining known five-stick crossing).

Question. How many distinct popsicle stick weaves exist for n sticks?

Related.

1. What if the sticks are only allowed to touch three other sticks?

2. What if the sticks are another geometric object (e.g. semicircles)?

4
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Problem 5.

Let
Cn = {f : [n] → N | the convex hull around {(1, f(1)), . . . , (n, f(n))} forms an n-gon}

and then let a(n) denote the least upper bound over all functions in Cn

a(n) = min{max{f(k) | k ∈ [n]} | f ∈ Cn}

Figure 1: Examples of a(3) = 2, a(4) = 2, a(7) = 4, and a(8) = 4, where the polygons with an even number
of vertices have rotational symmetry.

Question. Do these polygons converge to something asymptotically?

Related.

1. Does a(2n) = a(2n− 1) for all n?

2. Do the minimal 2n-gons always have a representative with rotational symmetry?

3. Are minimal 2n-gons unique (up to vertical symmetry) with finitely many counterexamples?

4. What is the asymptotic growth of a(n)?

References.

A285521: “Table read by rows: the n-th row gives the lexicographically earliest sequence of length n such
that the convex hull of (1, a(1)), ..., (n, a(n)) is an n-gon with minimum height.” (https://oeis.org/A285521)
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Problem 6.

Let fn,m : [n] → [m] be a uniformly random function. Consider the convex hull around {(1, f(1)), . . . (n, f(n))}

Figure 1: Examples of f3,2. Here the expected number of sides on a convex hull is 2.75

Question. What is the probability of seeing a k-gon (for some fixed k), when given a uniformly random
function fn,m?

Related.

1. What value of k has the highest probability?

2. What is the expected value of the number of sides?

3. What if fn,n is restricted to be a permutation?

4. What if fn,m is injective?
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Problem 7.

Given an n × n grid, consider all convex polygons with grid points as vertices. Let m(n) be the greatest
integer k such that there exists a convex k-gon on the n× n grid.

Figure 1: Examples that prove m(3) = 6,m(4) = 8,m(5) ≥ 9,m(6) ≥ 10, and m(7) ≥ (12)

Question. What is m(n)?

Related.

1. What is a proof (or counterexample) that the examples shown are the best possible?

2. How does m(n) grow asymptotically?

3. Do the shapes do anything interesting in the limit?

4. Are there finitely many maximal polygons without rotational symmetry (e.g. m(5))?

5. How does this generalize to m× n grids?

References.

Problem 5.

Problem 6.
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Problem 8.

Given an n× n grid, consider all the ways that convex polygons with grid points as vertices can be nested.

Figure 1: Seven nested convex polygons in the 3× 3 grid.

Question. If we think of each polygon having the same height, what is the greatest volume that we can make

by stacking the polygons this way?

Related.

1. What is the largest sum of the perimeters? The least?

2. What is the largest sum of the number of vertices? The least?

3. How many ways are there to stack n
2
− 2 polygons like this? Any number of polygons?

4. Does this generalize to polyhedra in the n× n× n cube?

5. Does this generalize to polygons on a triangular grid?
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Problem 9.

Consider all k-colorings of an n × n grid, where each row and column has �n/k� or �n/k� cells with each

color.

Figure 1: A valid 2-coloring, 3-coloring, and 4-coloring of an 3× 3 grid.

Question. How many such k-colorings of the n× n grid?

Related.

1. What if there also must be a total of �n2/k� or �n2/k� cells of each color?

2. What if these are counted up to the dihedral action on the square D4?

3. What if these are counted up to torus action?

4. What if these are counted up to permutation of the coloring?

5. Can this generalize to the cube? To a triangular tiling?
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Problem 10.

Consider Ron Graham’s sequence for LCM, that is, look at sequences such that

n = b1 < b2 < . . . < bt = k and LCM(b1, . . . , bt) is square.

Question. Let A300516(n) be the least k (as a function of n) such that such a sequence exists?

a(1) = 1 via (1)

a(2) = 4 via (2, 4)

a(3) = 3 via (3, 9)

a(4) = 4 via (4)

a(5) = 25 via (5, 25)

a(6) = 12 via (6, 9, 12)

a(7) = 49 via (7, 49)

a(8) = 16 via (8, 16)

a(9) = 9 via (9)

a(10) = 25 via (10, 16, 25)

a(11) = 121 via (11, 121)

a(12) = 18 via (12, 18)

a(13) = 169 via (13, 169)

a(14) = 49 via (14, 16, 49)

a(15) = 25 via (15, 16, 18, 25)

a(16) = 16 via (16)

a(17) = 289 via (17, 289)

a(18) = 25 via (18, 20, 25)

a(19) = 361 via (19, 361)

a(20) = 25 via (20, 25)

a(21) = 49 via (21, 36, 49)

a(22) = 121 via (22, 64, 121)

a(23) = 529 via (23, 529)

a(24) = 48 via (24, 36, 48)

a(25) = 25 via (25)

a(26) = 169 via (26, 64, 169)

a(27) = 81 via (27, 81)

a(28) = 49 via (28, 49)

a(29) = 841 via (29, 841)

a(30) = 50 via (30)

Figure 1: Examples of A300516(n) for 1 ≤ n ≤ 30.

Related.

1. For what values n is A300516(n) nonsquare?

2. For what values n does the corresponding sequence have three or more terms?

3. What is the analogous sequence for perfect cubes, etc?

References.

https://oeis.org/A300516
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300+ Digits of π From an (Almost) Ordinary Deck of Cards 
 

Mike Keith Jan 2022 
 
 
In this paper we discuss a new number puzzle involving a standard deck of cards, one that turns 
out to be sufficiently difficult that it is initially not clear whether the desired construction is even 
achievable. 
 
Preliminaries.  In this puzzle we’re going to use all 52 cards in a standard deck, which is 
comprised of 40 number cards (A through 10 of each suit) and 12 face cards (J, Q, K of each 
suit). The number cards have some special features that are important to our puzzle, so the A 
through 10 of spades are illustrated below. 
 

 
 

The number that appears in two corners of each card (paired with a small suit symbol) is known 
as the corner index, and we’ll call this number (1 (= A) through 10) its value, denoted by v.  The 
suit symbols in the middle of each card are the pips.  Note that some pips are rightside up and 
some are upside down; in the graphic above the upside-down pips are illustratively colored gray.  
The orientation of the pips shown here is the de facto standard for a deck of cards. 
 
We can summarize these pip orientations by listing the split for each possible value, a pair of 
numbers (r, u) that specifies how many rightside-up pips (r) and upside-down pips (u) there are, 
where r ≥ v and r + u = v.  The split numbers for v = 1 to 10 are shown in the table below.  The 
cards shown above are oriented with the larger set of pips, corresponding to r, at the top.   
 

Value (v) 1 2 3 4 5 6 7 8 9 10 

Split (r,u) 1,0 1,1 2,1 2,2 3,2 4,2 5,2 5,3 5,4 5,5 

 
Note that the 2, 4, and 10 cards, and only those, have r = v, so these cards look exactly the same 
when rotated by 180 degrees, but all the other cards are rotationally non-invariant.  There are two 
distinct ways to place an A, 3, 5, 6, 7, 8, or 9 on a table: with the r pips facing up, or rotated by 
180 degrees with the u pips facing up. 
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The numbered cards in a single suit have 1 + 2 + ... + 10 = 55 total pips, so the number of pips in 
all four suits is 55 x 4 = 220. 
 
We now introduce the idea of labeling the pips.  Imagine a single decimal digit (any digit 0 to 9) 
written inside each pip, with the orientation of each digit matching the orientation of the pip, so 
that if the pip is rightside up then so is the digit.  Pips of the “up” and “down” orientation will be 

labeled with two different colors.  We use the colors white and yellow, since these are both 
nicely visible when written inside either black (spades and clubs) or red (hearts and diamonds) 
pips.  Here is an example of a pip-labeled card: 
 

 
 
For the purposes of our puzzle, we’re going to “read” the rightside-up part of each pip-labeled 
card as a sequence of decimal digits, by reading the corner index number first followed by the 
digits inscribed on the rightside-up pips in raster-scan order.  The “10” index number on a ten 

card is read as the decimal digit “0”, and an “A” is read as the digit 1.  So the card above is read 
as “8 2 2 3 1 7”, the 8 coming from the index number in the corner and the 22317 from the five 

yellow-numbered pips.  Rotated 180 degrees this card becomes 8 2 1 3, from the 8 in the corner 
and the 213 on the white-numbered pips. 
 
Note that, when numbering an asymmetric card (not a 2, 4, or 10), you can choose which “half” 

(r side or u side) gets the yellow numbers.  The example above has the yellow numbers on the r 
side, but either way is acceptable when choosing how to number the pips. 
 
If all 40 number cards are placed on a table in some order, face up, with all the pip labels of the 
same color on top, we refer to this as a deal.  By definition the yellow numbers are on top in the 
first deal and the white numbers are on top in the second.  Reading off the rightside-up digits 
(index number + pip numbers) of all the cards in the kth deal produces a sequence of nk digits, 
for k = 1 and 2.  Note that n1 and n2 need not be equal, but there are 220 pips and 80 corner 
indices, each of which contributes a digit, so the number of digits in both deals (n1 + n2) is 300. 
 
Face cards.  There is no straightforward way to interpret the indices of the face cards as decimal 
digits – especially since there are only three distinct indices – so we will ignore the indices on 
face cards but do a different kind of pip numbering, by placing zero to four digits in each of the 
two large pips which traditionally appear at upper left and lower right of the face card picture 
area.  We picked four as a somewhat arbitrary upper limit by judging that it seems reasonable to 
put up to four digits in each large pip, but any more than four starts to look too crowded. 
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Here is an example of a pip-numbered face card: 
 

 
 
In this orientation the card is read as “2 8 4” (we read these digits in scan-line order, so it’s “2” 

from the top line then “8 4” from the second line).  Rotated, it reads as 9 2 5 9.  Again there is 
the concept of a first and second deal for the face cards, with yellow digits facing up in the first 
deal and white in the second, and we denote by fk the number of digits contributed by all the face 
cards in the kth deal.  Since we allow 0 to 4 digits in each large pip, each fk is in the range  
0 to 48, with the 48 achieved when a deal has 4 digits in the upper left corner of all 12 face cards.   
 
A full deal consists of laying out all 40 number cards followed by the 12 face cards, with all 
digits of one color facing up.  The kth full deal (k = 1 or 2) produces a total of nk + fk digits, and 
both deals together generate a total of T = n1 + f1 + n2 + f2 = 300 + f1 + f2 digits.  Because  
0 ≤  fk ≤ 48, T ranges between 300 and 396, depending on how many digits are inscribed on the 
face cards in each of the two deals. 
 
Puzzle statement.  Take a deck of cards and label each of the 220 pips of the 40 number cards 
with a single digit of your choice, with the orientation of the digits matching the orientation of 
the pips, and with the two digit orientations on each card colored yellow and white as described 
above.  On the asymmetric cards you can choose which “half” (r side or u side) gets the yellow 
numbers, then use white for the other half.  Also inscribe 0 to 4 digits in each of the two large 
pips of each of the 12 face cards. 
 
Make the first full deal of the 40 number cards (in any order) followed by the 12 face cards (also 
in any order), with the yellow numbers facing up on every card.  Read off the index number and 
the yellow digits of each number card in order, and the yellow digits on the face cards, and write 
them all in sequence.  Gather up the cards and rotate the whole deck by 180 degrees so that the 
white numbers are on top, and again order the number and face cards any way you wish.  Deal 
the second full deal of number cards followed by face cards.  Read off all the digits again and 
concatenate them to the first long digit sequence.  The result is a sequence of 300 to 396 digits 
generated by two deals from the same deck of cards.  The puzzle is: 
 

Can we find a two-color labeling of a 52-card deck as described above, and an 

ordering for the first and second deal, so that the two deals generate a pre-specified 

sequence of digits, such as, say, the first 300+ digits of the number π? 
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Before presenting some solutions to this puzzle a few definitions and remarks are useful.  To 
begin, here’s a recap of the two-deal structure: 
 

 
   
Recall that n1 + n2 = 300 and 0 ≤  fk ≤ 48, which means 0 ≤  f1 + f2 ≤ 96.  The total number of 
digits present in both deals is 300 + f1 + f2, a number in the range 300 to 396.  The values along 
the bottom (p, p + n1, etc.) specify where we are in the digit sequence we’re trying to “spell” at 
different points in these deals, where the whole thing starts at the pth digit of the sequence.   
 
The hard part of this puzzle is ordering and numbering the pips of the number cards (the first and 
third sections of the diagram above) since we have to interleave the fixed index numbers on these 
cards with the numbers inscribed on the pips.  However, since the indices on the face cards aren’t 
used, the digits inscribed on them are essentially “free” digits.  Indeed, without loss of generality 
we can always order the 12 face cards in both deals as, say, J,Q,K of clubs followed by JQK of 
diamonds, hearts, and spades. 
 
But one aspect of numbering the face cards is quite important: the value of f1. The second deal 
starts at digit p + n1 + f1, which depends on f1, so the alignment (with respect to the digit 
sequence) of the second deal of number cards changes when f1 changes.  This can be crucial in 
determining whether the number-card part of the second deal can be successfully constructed. 
 
In general f1 and f2 can be any number from 0 to 48, for a total digit count of 300 to 396, but we 
realized that a digit count of 384 would be especially nice, since two different 384-card decks (if 
they can be constructed) could be used to span the first 2 x 384 = 768 digits of π.  As all true π 
fans know, the remarkable run of digits “999999” ends at the 768th digit of π, so this two-deck 
set would be quite an elegant construction, with its digits terminating at that famous spot. 
 
A 384-digit deck has f1 + f2 = 84, so there must be an average of 84/12 = 7 digits per face card.  
This can be pleasantly achieved by putting, on each face card, 4 digits in one of the two large 
pips and 3 digits in the other large pip.  We decided to restrict our search to this special case, 
with 36 ≤  fk ≤ 48,  f1 + f2 = 84,  n1 + n2 = 300, and a total deck size of exactly 384.  A nice 
subcase occurs when f1 = f2 = 42; we refer to this face-card allocation as being balanced.  Note 
that the number cards also may or may not be balanced: n1 + n2 is always 300, but n1 and n2 may 
not be equal, and typically aren’t.  If n1 = n2 = 150 we say the number cards are balanced.  If both 
the face cards and number cards are balanced we call such a solution perfectly balanced. 
 
Here, now, is a successful construction of a 384-digit deck for the digits of π.  The 52 cards of 
this deck are shown on the following three pages.  Number cards in this display are oriented with 
the r side up, which means that each card can have either the yellow or white digits on top, 
depending on how they were assigned. 

 5 

 

MATH | 127

 6 
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The next two pages show both deals: the first deal with all yellow numbers facing up, the second 
with white numbers.  By dealing the cards in columns we can hide all the upside-down pips 
(except on the card at the bottom of each column) and directly read off the digits of π by just 
scanning down each column starting with the left one.  The actual digits of π are displayed at the 
bottom of each page.  Amazingly, this solution is perfectly balanced, with 150 number-card 
digits and 42 face-card digits in both deals, and it the unique solution with this property. 
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First Deal 

 
 
Number cards 31415926535897932384626433832795028841971693993751 
150 digits 05820974944592307816406286208998628034825342117067 
 98214808651328230664709384460955058223172535940812 
Face cards 
42 digits 848111745028410270193852110555964462294895 
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Second Deal 

 
Number cards 49303819644288109756659334461284756482337867831652 
150 digits 71201909145648566923460348610454326648213393607260 
 24914127372458700660631558817488152092096282925409 
Face cards 
42 digits 171536436789259036001133053054882046652138 
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Finding solutions.  Suppose we try to find a solution to this puzzle by hand, and consider just 
the number card deals.  The first card of the first deal has to be a “3”, since its value must match 
the first digit of π.  But now we have a choice of orienting this card with the two r pips facing up, 
which will get inscribed with the next two digits (1, 4), or with the one u pip facing up, which 
will get the single digit (1).  In the first case the next card used must be an Ace, to capture the 
next “1”, but in the second case the next card must be a 4, since the only digits captured so far 
are (3, 1).  In general, both orientations have to be tried for every number card except for the 
rotationally symmetric 2’s, 4’s, and 10’s, which is a total of 40 – 12 = 28 binary choices.  During 
the second deal, the orientation of each card is further constrained by how the cards are oriented 
in the first deal, but quite a few still have to be tried in both orientations. 
 
The number of branches in this search tree is too enormous for a search by hand, so we wrote a 
computer program that does an exhaustive, recursive, depth-first search for solutions for the first 
number-card deal, and then for each successful first deal does a similar search (whose starting 
point in the digits of π depends on the value of f1) to see if the second number-card deal can also 
be constructed.  The basic recursive task in this algorithm is to pick one more card from the deck, 
choose its orientation, add it to a tentative solution, then recurse.  The value of this card must 
correspond to the next unused digit of π, but we usually have to try both orientations of the card, 
which determines whether it uses up the next r+1 or u+1 digits of π. 
 
Recall that a 384-card deck has 36 ≤  fk ≤ 48, so there are 13 different choices available for f1.  
We try all of these values in the order 42, 41, 43, 40, 44, etc., and stop at the first solution (if 
any) found by the algorithm described above.  This finds a solution that’s as close to balanced  
(f1 = 42) as possible. 
 
After success with the first 384 digits of π we ran the same search using the next chunk of 384 
digits in π (i.e., digits 385 to 768).  We found solutions for f1 = 37, 41, 45, and 47 combined with 
n1 = 147 or 149.  While this is interesting, neither the number cards nor face cards are balanced 
in these solutions.  We’re greedy, and wanted a solution for the second deck that’s perfectly 
balanced, so we wondered if there might be another degree of freedom we could use to help find 
a perfectly-balanced 384-digit deck for digits 385-768 of π. 
 
Alternate Splits.  There is, indeed, a subtle trick that can be employed to significantly enlarge 
the search space for finding solutions.  Recall that the split into rightside-up and upside-down 
pips on each number card is determined by the traditional orientation of the pips in a standard 
deck, as shown in the diagram on the first page of this paper.  Since we insist that rightside-up 
digits always go on rightside-up pips, we must always follow the (r, u) splits as shown in the 
table on page 1.   
 
Strictly speaking, however, this rule only needs to be followed for the club, heart, and spade 
cards, since their suit symbols have a concept of “rightside up”.  This is not the case for 
diamonds, whose symbol is invariant under a 180-degree rotation.  So we could, in theory, split 
the rightside-up and upside-down pip numbers differently on the diamond cards, and this will not 
cause any unwanted appearances of an upside-down digit on a rightside-up pip.  We call these 
alternate ways of dividing the pips on the diamond cards alternate splits (AS for short), as 
opposed to the standard splits defined by the pip orientations of a traditional deck of cards. 
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What alternate splits are possible?  For aesthetic reasons, we insist on these two rules: 

(1) The pips must be split by a horizontal line that runs the full width of a card.  This means, 
for example, that 4 cannot be split as (3, 1). 

(2) Both numbers in the split must be nonzero.  So, for instance, 4 cannot be split as (4, 0). 

These two rules mean that there aren’t any alternate splits available for the A, 2, 3, 4, 5, and 6 
cards, but the 7, 8, 9, and 10 cards do have alternate splits, as shown below.  The cards in the top 
row are shaded to show the standard split, with the alternate versions depicted on the second row. 

 
 Standard: (5,2)     Standard: (5,3)   Standard: (5,4) Standard: (5,5) 

 
  Alternate: (4,3)    Alternate: (6,2)   Alternate: (7,2) Alternate: (7,3) 

 
There’s actually a second split available for 10, which is (8, 2).  We decided to not allow this 
one, as it is simpler and cleaner to have a single AS choice for each value (7, 8, 9, and 10).  This 
means that there are exactly four cards in the whole 40-card deck (the 7, 8, 9, and 10 of 
diamonds) on which a unique alternate split can be used, if desired, to help achieve the 
successful construction of a solution.  Since we can either use or not use the AS version of each 
of these four cards, there are 16 different AS configurations.  So the full process of finding a 
solution now is to run the exhaustive search described above for each of these 16 AS choices. 
 
We say that a solution using zero AS cards is pure.  As already mentioned, there is no pure, 
perfectly-balanced solution for digits 385-768 of π, but there are some perfectly balanced 
solutions using AS cards.  The two solutions with the fewest AS cards use just one: either the 8 
or 10 of diamonds.  The 8-of-diamonds solution is shown on the next two pages.  (To save space 
only the two deals are shown, since the full numbering of all 52 cards can be inferred from the 
two deals.)  The alternate 8 of diamonds, with its (6,2) split, is colored beige to make it easy to 
spot in both deals. 
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Second deck,  First Deal: 

 

 
Number cards 41469519415116094330572703657595919530921861173819 
150 digits 32611793105118548074462379962749567351885752724891 
 22793818301194912983367336244065664308602139494639 
Face cards 
42 digits 522473719070217986094370277053921717629317 
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Second deck,  Second Deal: 

 

 
Number cards 67523846748184676694051320005681271452635608277857 
150 digits 71342757789609173637178721468440901224953430146549 
 58537105079227968925892354201995611212902196086403 
Face cards 
42 digits 441815981362977477130996051870721134999999 
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Note the 999 and 999 on the final two face cards, encapsulating the famous 999999. 
 
Continuing through the digits.  What happens if we keep marching through the digits of π in 
384-digit chunks?  Can we always find a solution, or do some 384-digit groups occur for which 
no solution exists for any value of f1 (in range 36 to 48) and any set of AS cards?  To get some 
idea of what happens we looked for solutions for the first 261 384-digit chunks of π spanning 
261 x 384 = 100,224 digits, which took roughly 200 minutes of runtime on a single core of a  
10-core 2022-era PC (or 20 minutes using all 10 cores in parallel).  Within this range, there are 
four places (starting at digits 14208, 38400, 57216, and 88704) where no solution exists.  Is there 
some way to handle these troublesome spots? 
 
Recall that these 384-digit decks have these restrictions: 
 

[a] n1 + n2 = 300 
[b] f1 + f2 = 84 
[c] 36 ≤  fk ≤ 48, 

 
We do not want to give up condition [a], but conditions [b] and [c] can be relaxed to: 
 

[b’] 0 ≤  f1 + f2 ≤ 96. 
[c’]  0 ≤  fk ≤ 48 

 
which was our original formulation, with a deck spanning from 300 to 396 digits, prior to fixing 
the deck size at 384 digits.  So let’s distinguish between a 384 deck, satisfying [a], [b], [c], and a 
general deck satisfying [a], [b’], [c’]. 
 
A possible strategy for getting past impossible positions in the digits of π is: 
 

(1) Use 384 decks by default, marching through the digits 384 at a time. 
(2) When a position p is reached where no 384 deck works, 

(2a)  Move back to position p – 384. 
(2b)  Try general decks with various values of f1 and f2 to (hopefully) find a solution. 
         Let d (not equal to 384) be the number of digits in a deck that works here. 
(2c) Continue from position p – 384 + d using 384 decks. 

 
Since d ≠ 384, p – 384 + d ≠ p, so in step (2c) we’re trying to find a 384-deck solution in a 
position different from the position, p, where the 384 deck failed in step (2).  By trying various 
values of d in step (2b) we can hopefully find one that makes step (2c) work.  There are 96 
different values of d that can be tried: every integer from 300 to 396 except 384. 
 
Using this strategy we were able to find a series of decks that encode the first half million digits 
of π (500,048, to be exact).  In step (2b) we first tried a 300-digit deck (which basically dispenses 
with the face cards), since this provides the largest shift in position (-84) within the digit 
sequence, by which we’re hoping to overcome the “bad” position p.  If a 300-digit deck didn’t 

work we next tried 348, then 392.  Within this 500,048-digit range we never needed to try other 
values, meaning that we only used 3 of the 96 d values available. 
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The figure below shows the result of our 500,048-digit search, where each block represents one 
deck in a series of 45 x 29 = 1305 decks.  For each deck we first attempted to find a perfectly-
balanced (PB) solution, while also minimizing the number of AS cards.  If no such solution 
exists then we looked for a non-PB solution.  To distinguish them, perfectly-balanced 384 decks 
are colored white, while non-PB 384 decks are pale red. 
 

 
 
Only 15 non-384 decks (of just three varieties) were required.  These are colored green, magenta, 
or blue, as shown in the legend, according to their digit count.  Although not indicated in the 
figure, 14 of these 15 solutions are perfectly balanced, the only exception being the single 392-
digit deck.  Overall, 1078 (82.6%) decks are perfectly balanced, and 125 (9.6%) of them are 
perfectly balanced and pure – including, as we have already mentioned, the very first one. 
 
The AS cards used in a solution, if any, are indicated by one to four dots inside the square.  The 
figure at the right in the legend shows which dot positions represent the 7, 8, 9, and 10 cards. 
 
All of π?  Does an infinite sequence of contiguous labeled decks exist with which to spell out all 
the digits of π?  If the π-is-normal conjecture is true, the answer is no: 
 

Theorem:  If π is normal, any contiguous sequence of general decks (each spanning at least 

300 and at most 392 digits) will eventually fail – i.e., will encounter a section of π’s digits 

where no general deck can be constructed. 
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Proof:  Define a bad window of digits in π as a contiguous block of n digits of π which has the 
following property:  The 40 number cards in a deck cannot be labeled in a way that allows either 
deal from this deck to capture the digits contained in the given window.  One example of a bad 
window is a block of digits in which any one specific decimal digit appears fewer than four 

times.  This works because there are four cards with each index number in the deck, and for each 
of these cards there must be digit in the window to assign it to.  So if any digit occurs fewer than 
four times, a deal cannot be constructed. 
 
Now recall that each deck has the structure N1 – F1 – N2 – F2, where N and F represent a block of 
number cards and face cards, respectively.  The number of digits that can be captured by each N 
and F is bounded in size, so if the length, n, of the bad window is large enough then either N1 or 
N2 of some deck (in the sequence of decks) must lie entirely within the bad window, and cannot 
be constructed.  The theorem follows by noting that if π is normal, arbitrarily large bad windows 
of the type described above are guaranteed to exist. ■ 
 
Bad window size.  Exactly how large does the bad window need to be?  The most digits that a 
number-card deal can capture occurs when the r pips of every number card are used in the deal.  
The sum of the ten r numbers (for A to 10) is 1 + 1 + 2 + 2 + 3 + 4 + 5 + 5 + 5 + 5 = 33, which 
multiplied by 4 for the four suits gives 132, plus 40 for the index numbers = 172.  But we can 
increase this a little more by using the alternate split on the 8, 9, and 10 of diamonds (but not the 
7, since the alternate split actually reduces the value of r); this changes the final 5 + 5 + 5 in the 
sum to 6 + 7 + 7, for a total of 177. 
 
Now consider two number card deals with a face card deal between them (N – F – N).  The most 
digits this can represent is when both N’s are 177 and F = 48, so 177 + 48 + 177 = 402.  If the 
bad window is one smaller than this (401), then no matter how the 402 digits of N – F – N line 
up with it, at least one N will lie totally within it, and therefore be impossible to construct. 
 
The location of a specific 401-digit bad window in π is not yet known.  We searched the first 
100,000,000 digits and found that the longest one is this 264-digit specimen at digit 6,562,558: 
 
55219456178142178562058161430560084829194894522917 
65224987912952876682978117724669017646018271765886 
51349759408824181279876983955661018207966027682609 
69925986952754875228992744105286487475109745400419 
66491666472167120896527642127106288745970106469107 
72458186210661 
 
Note the three 3’s shown in red, the only 3’s in this whole group of digits.  Also note that 264 is 
still a long way from 401!  The question of how far we can continue this deck-building game in 
the digits of π before provably getting stuck remains an open problem. 
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A flat torus is classically described as the geometric space obtained by gluing the parallel sides of a 

square, with the same orientation. One can start instead from any parallelogram, so that there is a 

whole family of flat tori. In mathematical terms, one can think of modding out the plane by the group 

generated by two translations. 

The family of flat tori obtained this way has itself a rich geometric structure. It is an orbifold and it is 

called the modular curve (of tori). It is smooth almost everywhere except for two cone points 

corresponding to the square torus and the torus glued out from the 60-degree-angled parallelogram. 

The precise mathematical construction of the gluing of the flat tori poses no particular issue. However, it 

is trickier to realize an isometric embedding of such a flat torus in euclidean 3-space. Recent work of 

Borrelli et al., using Nash embedding theorem, show how to realise a C1 embedding, but this embedding 

has a smooth fractal structure which is difficult to realize in practice, especially in paper! 

We are looking here for a different type of embedding, an origami embedding, i.e., a continuous, 

piecewise linear embedding of the flat torus into the euclidean 3-space. The very existence of a non-

trivial embedding of this kind is not obvious at all (in fact, till 3 months ago, we thought that such a 

locally flat embedding did not exist). 

In late 2019 at the "Illustrating Mathematics" semester in ICERM, we learned about two possible 

realizations of flat torus embeddings with paper folding. 

One realization was explained to us by Henry Segerman who learnt about it from a dedicated page on 

the French website mathcurve.com, with origins that can be traced to a Russian paper by Burago and 

Zalgaller from 1996, translated into English in 1997. The method consists in starting with a regular 

Paper Tori

Alba Málaga Sabogal, Samuel Lelièvre & Pierre Arnoux
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polygonal prism, take only its external walls, and then connect top and bottom polygons with congruent 

triangles. We will call these embeddings, prism embeddings; and the embedded tori, prism tori. 

Glen Whitney showed us that a similar construction is doable starting from an antiprism, giving rise to 

antiprism tori. 

In the gift exchange, we propose to give away flat layouts for flat tori. Our layouts have been thoroughly 

tested. They contain some excess paper and flaps so that once folded, they stand stably on their own, 

even without glue. 

We also want to contribute a short paper about flat tori to the book. This will include a short history of 

the paper flat tori concept, then explain the buildup of the layout and the set of points in the modular 

curve covered by our paper flat tori. The set of flat tori that can be realized as polyhedral flat tori is still 

not completely clear. 

By reporting results from the Illustrating Mathematics program, this material is based upon work 

supported by the National Science Foundation under Grant No. DMS-1439786 and the Alfred P. Sloan 

Foundation award G-2019-11406 while the authors were in residence at the Institute for Computational 

and Experimental Research in Mathematics in Providence, RI. 
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An Origami-inspired Adventure in Number Theory 

and Programming 

Jeanine Meyer 

Abstract: This paper describes an origami-inspired adventure. It will be a 

personal story, with attention to my history with mathematics and games. This 

focus is on the Dollar Bill Rosette model, created by Paul Jackson and modified 

by Martin Kruskal. The folding procedure is significant mathematically in [at 

least] two ways. It starts off with an iterative procedure that improves an original 

estimate, that is, decreases the amount of error. The folding procedure works, that 

is, goes through all the intermediate values, for a known class of numbers: reptend 

primes base 2. I came upon this class using programming in Python and online 

research. My proof that the numbers that work with the folding procedure are 

indeed the reptend primes base 2 is included.  I term this an instance of “number 

theory in the wild”. 

1 Background 

My father always liked mathematical games and puzzles and, as a consequence, I 
did, also, because it was what we did.  The family subscribed to Scientific 

American. I learned about origami from an article in the Mathematical Games 
section by Martin Gardner that featured the flapping bird. Later I met Lillian 
Oppenheimer, who taught me the Business Card Frog; her daughter-in-law, Laura 
Kruskal, teacher and origami inventor; and, more or less accidently, several of 
Lillian’s grandchildren.  I studied mathematics and computer science and worked 
at IBM Research in robotics and manufacturing research. When I came to 
academia, I used games and origami in my teaching examples. The model 
featured here inspired a book, Origami with Explanations, scheduled for 
publication Summer, 2020. 
 
Several years ago, Mark Kennedy, master folder and teacher, organized informal 
folding events to take place while in line for New York City’s Shakespeare in the 

Park. I have forgotten what play I saw, but one year I learned the dollar bill 
rosette. The model taught was the 22-panel rosette by Martin Kruskal. 
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Figure 1: Dollar Bill Rosette. 

At some point after learning the model, I showed it to a mathematician colleague 
at IBM Research and he said that he guessed that the numbers for which the 
procedure worked were a certain known class of primes. I now explain the 
folding of the model, which starts with making an estimate; show how the 
procedure improves the estimate; and then describe how I identified the class of 
primes using a program written in Python.  I provide a proof connecting the class 
definition with the folding procedure. Lastly, I describe how this work inspired a 
new course and then a book project. 
 
Note: I did not know Martin Kruskal (son of Lillian, husband of Laura, and 
mother of Clyde, one of my office mates when we were graduate students at 
NYU and highly regarded mathematician), but I would guess that he knew the 
mathematics, which I figured out on my own and will explain here.   
 

2 Folding the Model 

The first and main task in folding the rosette is to produce a fan consisting of 10 
valley folds and 11 mountain folds. (If you want to do the Paul Jackson model, 
make 8 valley folds and then make a fan by putting mountain folds in-between 
the valley folds.) The valley folds divide the bill into 11 parts.  
 
How do we make these 10 folds? First, estimate where the 1/11 position is on the 
dollar bill. The estimate is marked by putting a pinch on the side. Thinking of the 
pinch or mark as dividing the bill into 1-part and 10-part regions, we then divide 
the 10-part region in half by folding the end to the first mark, the one where we 
estimated one eleventh, and making a second pinch. The new pinch divides the 
bill into 6-part and 5-part regions. The pattern to note here is that there always 
will be two numbers, adding up to 11, with one even and one odd.  
 
The next step is to divide (halve) the even portion of the two parts, setting a 
number N and set the other part to 11-N. This is repeated until you get back to 1 
and 10. The sequence is 

 1 and 10 
 6 and 5 
 3 and 8 
 7 and 4 
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 9 and 2 
 10 and 1 
 5 and 6 
 8 and 3 
 4 and 7 
 2 and 9 
 1 and 10 
 

The last step produce a mark at the 1/11 area of the bill. Presumably it is close to 
the original mark. In fact, it will be an improved estimate!  Yes, this is counter-
intuitive. In the next section, I will explain how this process has improved the 
estimate. 
 
Not counting the last row of the list, you see that 10 marks have been made on the 
dollar bill, all the intermediate positions. The dollar bill is divided into 11 equal 
size parts.  Now, I will [quickly] describe the rest of the folding.  
 
Going through the sequence again, we make full valley folds instead of pinches at 
each of the 10 positions. Next, make mountain folds in-between the valley folds to 
make a fan shape.  These next steps are shown Figure 2: Completing the model.  It 
works for the original 16 panel version as well as the 22-panel version.  Divide the 
fan folds evenly into two parts and then unfold 3 segments on each side. Let’s call 

these sections flaps. Fold the model over in the middle so that the two sets of flaps 
lie next to each other. Turn each combined flap into a tab shape and tuck each 
inside. Open up the fan to be a circle. The model is complete. 
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Figure 2: Completing the model. 

 

 

 

 

MATH | 142 MATH | 143



AN ORIGAMI-INSPIRED ADVENTURE IN NUMBER THEORY AND PROGRAMMING 

 5 

3 Improving an Estimate 

Most origami folders are familiar with what is termed the S method for dividing 
something into thirds. In the S method, you estimate what 1/3 would be and either 
make a mark or remember the position of your estimate. Orient the paper to look 
down on the edges and manipulate it into an S shape and then carefully turn the 
curves of the S into a Z and make the 3 parts the same size.  A more systematic 
variation is to make a mark at what you think is one third on the edge of the 
paper. This divides the paper into one-part and two-part areas. Let’s call the 

length of the edge L, the length of a true third t and where the mark was made 
t+e. The e is the amount of error. The length of the two-part area will be  
      L – (t+e).  
(If you think of e as positive, this assumes that the original error was an over-
estimate of a the third. The reasoning applies to an under-estimate.) 
 
Fold the paper to the mark to divide the two-part area in two. We make the 
assumption that this fold is accurate. Make a mark. The distance from the edge to 
this second mark is half of L – (t+e).   
 (L-(t+e))/2  
 
Making some re-arrangement of terms, this distance is  
 (L-t)/2 – e/2.  
Since  
 t = L/3 
Substituting for t we get 
  L/3 –e/2.  
This shows that the error for the second mark is half of the original error. You can 
repeat the process is many times as you want to improve the estimate; that is, 
shrink the error.  
 
The same phenomenon occurs when the rosette procedure is done. Assuming 
dividing a portion in half and the folding to a mark is accurate, the error amount 
is halved each time a section is divided into two parts. For the rosette model 
which involves 10 steps, the cumulative effect is to halve the error term 10 times! 
This means the original e is shrunk to e/210. The value of 210 is 1024 so the final 
error is very small. To use mathematical language, the value of the error term e 
has limit zero. In practical terms, you can make it as small as you want. 
 

3 The Number 11 and What Else 

The next question relates to the number 11. The procedure of dividing the dollar 
bill edge into two parts and then dividing the even part in half goes on 10 times. 
Each of the intermediate points is hit. Does this work for all numbers? It does 
work for 3 but what other numbers? 
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The first observation is that the number must be odd so that any partition into two 
parts yields one odd and one even part.  
 
NOTE: Following the practice in programming, I use the asterisk for 
multiplication. 
 
A next observation is that the number must be prime. Consider the case of 15. 
The procedure would start with 1 and 14 and then continue as follows 
 
 1 and 14 
 8 and   7 
 4 and 11 
 2 and 13 
 1 and 14 
 
We note that this sequence does not hit all the intermediate points. Here is an 
informal proof: 
 
Suppose P is not prime, say it is equal to M * N, where M and N each >1. Note 
that neither M or N can be even. 
In the rosette procedure, at some point, the sizes for the two portions must be M 
and (N-1)*M. What is the next step? M is not even, so the next step would be 
 
  M+((N-1)/2)*M  and ((N-1)/2)*M 
 
Continuing the folding process, each of the pair of numbers would have a factor 
of M. That is, it would not continue to a pair with one of the two equal to 1. One 
way to make this more concrete is to consider the number 9. In this case, M and 
N are each equal to 3. Assuming the process works, applying the folding 
procedure to 3 and 6 results in 6 and 3 and then 3 and 6.  The procedure gets 
stuck and never reaches 1 and 8. 
  
The procedure does not work for all primes. Consider the situation with 17. Here 
are the successive pairs produced when we start with 1 and 16. The procedure 
ends, that is, returns to 1 and 16, but does not hit all the intermediate points. 

– 1 and 16 
– 9 and 8 
– 13 and 4 

– 15 and 2 
– 16 and 1 
– 8 and 9 
– 4 and 13 
– 2 and 15 
– 1 and 16 
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At this point, I recalled the conversation from many years ago that there is a 
certain class of primes that may correspond to those satisfying the origami 
procedure. I decided to investigate.  
 

4 Write a program and Search the Web 

Python is the language I used to check if numbers work using the folding 
procedure. I chose Python because it is the language we use in our Number 
Theory course, which makes use of a book, Elementary Number Theory with 

Programming.  We made that decision because Python has arbitrary precision 
for integers.   
 
[Aside: JavaScript is used in the book because the authors believed it to be an 
easier language for people less familiar with programming to follow. In contrast 
to most colleges, Purchase College/SUNY offers only a joint 
Mathematics/Computer Science major, so the students taking the Number Theory 
course have had at least one programming course. The Number Theory course 
provides us a way to introduce another programming language, Python. Our 
students can appreciate the advantage that the arbitrary precision provides for 
number theory and can appreciate when it is critical to avoid leaving the integer 
domain for floating point numbers.] 
 
My Python program is shown below and is, hopefully, readable. It is my only 
Python program. Comments start with #. Indentation is required to indicate the 
content of functions and clauses. The function, tryProcedure, is invoked with 

a value N as argument. The variable count keeps track of the number of steps. 

The variables currentpos and remainder describe the pair of numbers 

(parts).  The # symbol indicates a comment for the rest of the line. 
 
def tryProcedure(N): 
   count = 1          # start with 1 and N-1 
    currentpos = 1 
    remainder = N-currentpos 
    while True:  
     if (isEven(currentpos)): #  determine even side              
           currentpos = currentpos//2   
             # the // forces integer division 
           remainder = N - currentpos 
     else: 
           currentpos = currentpos + remainder//2 
           remainder = N-currentpos 
     count = count + 1 
  
     if (currentpos==1):   #at 1, leave loop 
           break 
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# outside of the while loop 
   if (count==N): 
       print(" ",N,end="")   #This is a good value  
   return 
 
The operation of integer division, indicated by the //, is important for keeping 
everything integers. 
 
The program prints out a good number, that is, the numbers that go through N 
steps before returning to the pair 1 and N-1.  Invoking the tryProcedure 

function from 3 to 1000 produced the following list of numbers: 
 

3 5 11 13 19 29 37 53 59 61 67 83 101 107 131 139 149 163 173 179 181 197 
211 227 269 293 317 347 349 373 379 389 419 421 443 461 467 491 509 523 
541 547 557 563 587 613 619 653 659 661 677 701 709 757 773 787 797 821 
827 829 853 859 877 883 907 941 947  
 
Since I did not remember what my colleague said some years ago, I attempted to 
consult the institutional memory of the web by putting this whole set of numbers 
into the Google search field. I was not that optimistic, but it was successful! I 
reached https://en.wikipedia.org/wiki/Full_reptend_prime 
 

5  Proof the two Classes are the Same 

[Note: Repeat: I do not claim to be the first person to prove that the folding 
procedure for the rosette and the reptend prime base 2 procedure are the same. I 
did not find a proof, but I did not look very hard because I liked thinking about it 
myself.] 
 
The reptend prime base 2 class is defined as follows: 

A number P for which 2 raised to the power N, N going from 0 to P-2, 
produces the numbers 1 to P-1, modulo P, is a reptend prime base 2. 

 
If the P-2 seems strange, do note that the process starts with 0, not 1. 
 
Here is the reptend procedure for 11: 
 
  20 is 1 = 1 mod 11 
  21 is 2 = 2 mod 11 
  22 is 4 = 4 mod 11 
  23 is 8 = 8 mod 11 
  24 is 16 = 5 mod 11 
  25 is 32 = 10 mod 11 
  26 is 64 = 9 mod 11 
  27 is 128 = 7 mod 11 
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  28 is 256 = 3 mod 11 
  29 is 512 = 6 mod 11 
  210 is 1024 = 1 mod 11 
 
This sequence, that is, the defining characteristic of reptend primes base 2, 
resembles the folding sequence for 11, but in reverse order. This certainly is not a 
proof since it is just the one number, 11, but it is encouraging.    
 

To prove that the numbers that can work using the folding procedures are the 
reptend primes base 2, one needs to prove that the numbers for which the folding 
procedure hits all the intermediate numbers are the same as the numbers for 
which the reptend process, raising 2 to powers from 0 to the number -1, hits all 
the intermediate numbers. I decided to try for a stronger result: the two 
procedures are the same procedure, with the folding procedure done in reverse 
order. Proving the bigger thing seemed easier to me than proving the smaller 
thing. That is, if N and P-N are pairs in reverse folding, then I will show that  
 
N = 2k mod P  
 
for all k steps starting from 0, for all primes P.  
 
So how to define the reverse folding process? There are several ways to approach 
this challenge. If (F and P-F) goes to (G and P-G) in the normal folding 
procedure, I need to define F in terms of G. I can consider cases of if F was odd 
and if it were even. Instead, consider the following. Either F was halved or P-F 
was halved. So either F is equal to 2*G, or P-F is equal to 2* (P-G).  Which one 
happened? The answer is to consider if 2*G is greater than P or not. Keep in mind 
that P is prime so 2*G cannot be equal to P. Also, since the pair of numbers, G 
and P-G add up to P, one is less than ½ of P and one is greater. So doubling one 
will be greater than P and doubling the other will be less.  
 
Initial case: k=0 

• Reptend and reverse folding start out with 

20 =1, so 20 =1 mod P 
 
Induction step 

• Can assume G = 2k mod P meaning  
G = 2k + a*P 

• Two cases: 2*G< P and 2*G > P. 
Case 2*G< P.  
So F = 2*G.  Substituting the expression for G 
F=2*(2k + a*P) = 2k+1 + 2*a*P so F = 2k+1 mod P 

 
• Case 2*G>P 

F = P-2*(P-G) 
F = P – 2*P + 2*G  Rearranging terms 
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F = 2*G – P  Substituting the expression for G  
F = 2*(2k + a*P) – P 
F = 2k+1 + 2*a*P – P 
F = 2k+1 + (2*a-1)*P  
F = 2k+1 mod P 

 
To recap: Because both processes yield the same results, both either satisfy both 
the reptend AND the folding criteria of hitting all the intermediate points between 
1 and P-1 or neither do. 
 
To put it another way, the sequences of numbers are the same starting at k = 0 
and continuing for all integers! However, we only consider the values up to 
 k = P – 2 for each P.  
 

6  Reflection 

This paper describes exploring an origami model, the dollar bill rosette.  The 
model provided opportunities to touch on topics in basic algebra, limits, 
programming, and number theory.  It also demonstrates what is a proof and the 
benefits and the limitations of web searches. A talk on this process, which we 
refer to as an adventure in origami, has been given several times to our Number 
Theory and Senior Seminar classes and the response from the students is strongly 
positive.   
 
In fact, my chair, upon hearing about my adventure, suggested designing a 
general education course based on origami. As one of many colleges that require 
everyone to take a math class, we always are looking for new courses. My first 
reaction was that the mathematics associated with origami was too difficult for 
most students. However, late one night, I was inspired and came out with a plan, 
making use of origami models to inspire topics in basic algebra, geometry and 
trigonometry. For example, final dimensions of the model can be computed in 
terms of the size of the (flat) paper. Students can think about the change from 2D 
to 3D.  We can compare crease patterns, folding sequences and final models.  
 
The dollar bill rosette model is taken up after simpler dollar bill folds.  I don’t 

expect the students to understand every aspect. It does seem that most of the 
students in the two classes to date:  

1) are initially surprised, but then understand how the procedure 
improves the initial estimate (the initial surprise is important)  
2) accept that seeing that the numbers that work for the folding 
procedure match this specific class of primes up to 1000 does not prove 
that the two classes are the same; and  
3) appreciate that my proof is stronger than just proving the definitions 
produce the same numbers…but sometimes stronger is easier. 
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In addition, I hope they observe for all the models my excitement and delight at 
the beauty, structure, and patterns of the origami and role of mathematics. The 
course also includes peeks at origami mathematics topics such as tessellations, 
flat-foldability and fold-and-cut. I now am working with a former student, now 
colleague and co-author, on a book project taking this approach. The models are 
traditional and modern, including action and modular models. Many models are 
made from squares, such as Japanese kami.  However, inspired by Laura Kruskal, 
who favoured using so-called found paper, in addition to the dollar bill rosette, 
there are other dollar bill models, and also models from business cards and copier 
paper. See Figure 3 for some of the models. We appreciate the permissions 
granted by the designers and the general support. The adventure continues. 
 
 
 

 
Figure 3: Selection from models used in course and book. 
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Towers and Dragons: An Unexpected Connection 
 
Introduction 
The Tower of Hanoi is a puzzle so well known that it hardly needs an introduction. This paper 
connects efficient solutions to the Tower of Hanoi and the creases formed when a strip of 
paper is repeatedly folded in one direction, known as the Dragon Fold. What I’ve written here is 
a concise explanation of my “Towers and Dragons” lesson plan that was the winning submission 
for the 2020 Rosenthal Prize; for a fuller treatment see momath.org/rosenthal-prize/.  
 
The Tower of Hanoi 
This puzzle is so well-known that I’ll give a very concise description here. N discs are labeled 1, 
2, 3,….n, which are decreasing in size as n increases. The discs are stacked on one of three pegs, 
with the discs decreasing in size as you ascend. The goal of the puzzle is to move the entire 
stack from one peg to another. The constraints are that you can only move one disc at a time, 
and that smaller discs can be stacked on top of larger discs but not vice-versa. 
 
The minimum number of moves required to complete the puzzle is 2n – 1, which follows by a 
simple inductive argument. Moreover, the sequence of moves to achieve this minimum follows 
a symmetric/fractal like pattern. For example, with 4 discs, the sequence of moves is 
434243414342434.  
 
The Dragon Fold 
Take a strip of paper and fold the left edge to the right edge. Repeat this n times, always folding 
from left to right. This is a dragon fold, so called because when we unfold the strip the result is 
a dragon curve: 
 

 
 
The first connection to the Tower of Hanoi is obvious: An nth-stage Dragon Fold has 2n – 1 
creases.  
 

Towers and Dragons: An Unexpected Connection

Douglas O’Roark
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But the connection to Hanoi is deeper still. Suppose we label a crease formed by the first fold 1, 
then the creases formed by the second fold 2, etc. Read left to right, at the 4th iteration the 
creases are numbered: 434243414342434! So we can use the creases of the Dragon Fold to 
solve the Tower of Hanoi puzzle.  
 
An extension: Peaks and Valleys 
Another way to label the creases in a Dragon Fold are to indicate a ‘V’ whenever that crease is a 
Valley Fold, and a ‘P’ when the result is a Peak. The first iteration of the Dragon Fold gives the 
sequence V; the second gives PVV (in the figure above, ? and ?? are both Vs). The 3rd and 4th 
iterations give: 
PPV V PVV 
PPVPPVV V PPVVPVV 
 
These, of course, are not symmetric in the same way as the sequences of numbers given earlier. 
How can we generate each successive iteration of sequences? 
 
First, note that the middle symbol in any iteration is V.  
Next, notice how the right side of the sequence for a given iteration is simply the previous 
iteration. 
To derive the left side of the new iteration, visualize unfolding the dragon. What happens to all 
of the peaks and valleys as we unfold from right to left?! 
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Tetradecahedron as Palimpsest of the Monododecahedral
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Subtitle: Making Paper Bubbles

Eleftherios Pavlides1
(epavlides@gmail.com), Thomas Banchoff,,,

2 Alba Malaga 3
(alba@albamath.com),

Chelsy Luis,1* Kenneth Mendez,1* Ryan Arthur Kim,2 and Daanish Aleem Qureshi,2*
1 Roger Williams University, 2 Brown University, 3 University of Lorraine, Saint Dié des Vosges, France;

* Received RI NASA summer stipend to work on this project.

Introduction: Origins of the structure from two Bauhaus basic design exercises

In this article, we review and expand upon earlier G4G publications 1, 2 of the polymorphic

elastegrity structure that was discovered through paper folding and weaving. Two basic

design exercises at the Yale Architecture School led to the discovery of a “paper diamond”.

(a)               (b)              (c)                  (d)                (e)                        (f)                       (g)                      (h)                     (i)

Fig. 1: 1971 exercise (a) Students were told that design starts by finding simple rules. Anni Albers of the Bauhaus likened it to

knitting where the simple rules are to place the yarn over or under a needle. (b) Interest and complexity result from using simple

rules. (c) & (d) The simple rules given to students were the only two ways that exist to close pack spheres of equal diameters, as

represented with applicator sticks arranged in octahedral-tetrahedral lattices. The vertices represent the centers of spheres that

can only be close-packed as (c) A-B, repeating every second layer, and (d) A-B-C, repeating every third layer. Students were also

told that 100% of the periodic table crystals are homologous to one or the other close packings, and were instructed to use these

two ways of close packing spheres to create interest. (e) A helix with grooves to grow branch helices as seen in the digital

recreation of the 1971 finding, resulted from the mechanical repetition of A-B, A-B-C, A-B, and so on. 1972 exercise (f) Louis

Kahn, the famous architect, said to brick, “What do you want, brick?” Brick says to you, “I like an arch.” 3 Students were told to

allow material to dictate form, in the spirit of Joseph Alpers material exercises;4 (g) A diagonal crease on a square piece of paper

became surprisingly stable and raised the question of what would happen if a second diagonal was added; (h) A second crease

created a pyramid. It was recognized as an octahedral fragment due to the familiarity with octahedra gained with the 1971

exercise. It made one wonder, could several paper pyramids make a whole octahedron, and how many? (i) Experimenting with

paper showed “paper liked an octahedron” as six crosses of triangles could be assembled into a stable octahedron, by placing

two triangles of one axis over, and two triangles of the other axis under adjacent crosses. The resulting octahedron was named a

“paper diamond” because it was hard, the number six suggested carbon six, and uncut diamonds come as octahedra.

Others independently invented what is named paper diamond here, and called it various

names.5 Diamonds, though, are crystals and crystals grow. Having named it paper diamond, a

quest started how to grow paper crystals. Two ways of paper crystal growing were found, one

with face connectors fig 2(a), (b), (c) and another with edge connectors fig. 2(e), (f), (g), (h), (i).

(a)                       (b)                     (c)                    (d)                (e)           (f)                  (g)                    (h)                     (i)

Fig. 2 Face connectors (a) Create a four-cube-corner unit by folding four of the eight octahedral faces; (b) Six four-cube-corner

units; (c) Units assembled by inserting a cube into the missing corner creating a strong bond to grow a crystal; (d) Actual diamond

under an electron microscope resembles the paper analog of the crystal; edge connectors (e) A two-square rectangle with

diagonals and crosses creased through the centers of the squares is the element used to create a pyramid with insertable wings;

(f) Make a square on the diagonal; (g) Fold the square into a pyramid with wings; (h) Wings inserted in each other to grow the

crystal; (i). The pyramids are woven into paper crystals with edge connectors growing the crystal with malleable connections.

A failed experiment leads to the discovery of the Polymorphic Elastegrity

Experimenting to simplify the assembly and make sturdier paper crystals led to further

explorations. Creating edge connectors 3(i) as we saw, required a two-square rectangle where

each square had a cross creased and two diagonals through their centers. A slit was torn
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between the two centers of the squares fig 3(a), attempting to discover an improved way of

linking crystal units.

(a)                  (b) (c)                                  (d)                (e)                (f)                            (g)                      (h)

Fig. 3 Discovery of the Polymorphic Elastegrity (a) A slit is torn between the centers of the pre-creased squares; (b) The

rectangle is folded axially in half and squeezed to create a cross of eight little squares; (c) One axis of the cross has four squares

with a closed ridge on top and open sides. The other axis has four little squares, open on top forming a slit and closed sides; (c)

Six units; (d) Weave units placing the side of the cross with the open slit over a side with a ridge on top; (e) Weaving the six

crosses of little squares over and under as in step (d), results is three large intersecting squares that do not stay tight together.

The slits remain gaping open. It was discarded as a failed experiment. Having forgotten this failed experiment, this flaccid

structure was woven again a few months later. (f) Attempting to salvage time spent creating it, the slits were opened; (g) The little

squares with the slit on top were folded in half on their creased diagonals into two right triangles hinged along a leg. (h) When all

six slits are opened and inverted, twelve elastic hinge systems stabilize the entire structure into an icosahedron. Each hinge

system consists of the two right triangles hinged along a leg, with their hypotenuse elastically hinged to a tetrahedron. Each

tetrahedron is elastically supported by three hinge systems that link it to three tetrahedra that rotate with opposite chirality.

The resulting structure fig. 3(h) has four pairs of tetrahedra along four axes AA’, BB’, CC’, and

DD’ levitating on six pairs of elastic hinge systems. Each hinge system consists of two right

triangles hinged to each other along a leg (shown in green) and along their hypotenuses to two

tetrahedra (shown in red) fig. 4(e).  Each pair of hinge systems surrounds a gate with four free

legs fig. 4(d) that open and close around three orthogonal axes 1, 2, and 3 fig. 4 (a), (b), (c).

(a) (b) (c)                                 (d)                               (e)

Fig. 4 Polymorphic Elastegrity (a), (b), (c) Four tetrahedral axes and three orthogonal gate axes that do not move . (a) Expanded

into a cuboctahedron, leg hinge dihedral angles 180º, hypotenuse hinge 70.52º; (b) Regular icosahedron, leg hinge dihedral

angles 90º, and hypotenuse hinge dihedral angles 28.72º; (c) Contracted into an octahedron, all thirty-six dihedral angles 0º;

(d) Seven non-moving axes all motion is in relation to them;  (e) Six gates that open and close around the three orthogonal axes. .

When a force is applied along any of the four tetrahedral axes fig. 5, it actuates all thirty-six

hinges simultaneously. Twelve leg hinges (red), and twenty-four hypotenuse hinges (green) fig.

4(e), open and close symmetrically and in sync around the three axes fig. 4(c & d). The gates

close as the dihedral angles of their leg hinges  expand cooperatively to 180º, the hypotenuse

hinge angles expand to 70.52º, and the structure turns into a cuboctahedron with closed

gates fig. 6 (a). The six gates open in sync in response to compression along any of the

tetrahedral axes. When the leg hinge dihedral angles reach 90º the twelve vertices outline a

regular icosahedron fig. 6(c). The gates reach their maximum opening at dihedral angles

77.18..º.6 The gates close again as dihedral angles contract to 0º and turn the structure into an

octahedron fig. 6. The tetrahedra rotate in sync as they slide along the tetrahedral axes

towards or away from the center, and gates close and open and close again. Four tetrahedra

rotate chirally and four tetrahedra located diametrically opposite rotate anti-chirally.
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(a)                          (b)                          (c)                       (d)

Fig. 5 A force is applied on one of the four Fig. 6 Gates open and close as the twelve leg hinge dihedral angles to 180º

tetrahedral axes expand                                      cuboctahedron, 90º icosahedron, and contract to 0º octahedron

The asymmetrical tetrahedra form a resilient structure that keeps its shape in elastic

equilibrium fig 3(h). When a force deforming is removed, it springs back to its original shape.

This is the reason that it was named elastegrity by analogy to tensegrity, which also maintains

the integrity of the shape through pre-tension by springing back when a deforming force is

removed.

This structure was previously reported at G4G under different names. In 2016 for G4G12 it

yielded a mono-dodecahedron, that is a polyhedron with twelve congruent, but not

necessarily regular faces. In 2018 appropriately for G4G13, its thirteen axes were reported.

At that time it was still known as chiral icosahedral hinge elastegrity. An editor renamed it

Pavlides Elastegrity in 2020 simplifying the name and arguing that structures invented by

architects such as the Hoberman Sphere, and the Rubik’s Cube are named after the architect

who invented them. And since the editor, Elidir King, was classically trained, he also pointed

out that Archimedes, inventor of the Archimedes screw, was an architect, the naval architect

of Syracusia the largest boat ever constructed in antiquity, as well as an engineer and a

mathematician, as Archimedes is more commonly known.

(a)                                              (b)                                                 (c)                                                    (d)

Fig. 7 Architects who invented structures: (a) Renamed in 2020 Pavlides Elastegrity, (b) Hoberman Sphere, (c) Rubic’s cube

(d) Archimedes  Screw, Architect of the greatest vessel in the antiquity cruise ship, battleship, and freight ship all in one.

However, in 2022, the structure was renamed Polymorphic Elastegrity, due to its shape-shifting

properties. First, it contracts into an octahedron and expands into a cuboctahedron, as we saw

above fig. 6. With further folding, it can flatten into a multiply covered square and morph into

shapes with the vertices of each of the Platonic shapes as presented at G4G12.1

The monododecahedral path

The polymorphic elastegrity, through further folding, turns into a monododecahedron Fig. 8(f),

                       (a)                               (b)                                      (c)                          (d)                    (e)                             (f)
Fig. 8 Shape shifting through further folding. (a) Eight tetrahedra contracted into an octahedron; b) The eight rigid tetrahedra

are crushed with their right triangle faces bisected through creasing, creating eight groups of triradiational triangles. (c) The
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triradiational triangles open as shown into flat squares subdivided into four little squares through the creases; (d) Fold the

diagonals of the little squares into triangular flaps to cover the slits; (e) The  twelve folded flaps create eight pinwheels around the

collapsed centers of the tetrahedral equilateral faces, raising the structure into a cube; (f) By lifting the flaps from the face of the

cube at a dihedral angle φ and angle ε created by AG ⊥ BC so that φ + ε = 90º => sin φ + cos ε = 1

(a)               (b)                           (c)                          (d)                          (e)                           (f)                           (g)

Fig. 9 Monododecahedral path - computer animations by Thomas Banchoff : (a) Rhombic (degenerate pentagons one side is 0);
(b) Pentagons one angle is smaller than 90º, (c) Pentagon has one right angle; (d) Regular dodecahedron; (e) Pentagon one angle
is greater than 108º; (f) Pentagons one angle is much greater than 108º; (g) Rectangle (degenerate pentagon has one angle 180º)

Math proof how to construct a monododecahedron on a cube for any dihedral angle φ;
Use fig. 10 to support the proof that for every dihedral
∠φ there is a∠θ=∠BAK=∠DEL=∠BCD so that

ABCDE is flat. What we have is the central cube of the

elastegrity in fig. 10, (in what we call the mono-

dodecahedron position). What we are looking for is a

flap’s shape and position such that the vertices of the

flaps together with the vertices of the cube form a

monododecahedron. The cube is given, the angle of the

flap is given. What we need to figure out is where to

position the vertices of the flaps in such a way that the

resulting figure is a mono- dodecahedron. In particular,

ABCDE needs to be flat. (In the physical object the

correct positions for the vertices can be realized by

further folding the flaps). Draw both planes with dihedral

∠φ to face ▢BDLK: (a) plane 1a on through BK, that

will contain flap△ABK once A is fixed, and (b) plane 1b

through DL that will contain flap △DEL, once E is fixed;

Fig. 10 Monododecahedron Draw plane 2⊥ ▢BDLK bisecting it w/ FF’;

Intersect plane 1a & 1b w/ plane 2 creating respectively lines L1 where  AF will lie once A is fixed and

L2 where EF’ will lie once E is fixed; Draw plane 3 through edge BD w/ dihedral to ▢BDLK∠ε =

90°-∠φ; Intersect plane 3 w/ plane 1a & 1b creating lines L3 where AB will lie and L4 where DE will

lie once A and E are respectively fixed; Intersect L1 w/ L3 to fix point A, and intersect L2 w/ L4 to fix

point E; Draw AH & EH’⊥▢BDLK & GH||G’H’||BK||DL; △AGH ≅△EG’H’ because

(a) ∠ε=∠AGH=∠AG’H’; (b) GH = G’H’; (c) ∠AHG = ∠EH’G’ = 90º; △AFH ≅ EF’H’ because

(a) ∠φ = ∠AGH = ∠AG’H; (b) AH = EH’; (c) ∠AHF = EH’F’ = 90º => AF = EF’ => △ABK ≅ △DEL

because they are isosceles w/ equal height & base; Extend plane 3 and draw△CBD ≅△ABK ≅
△DEL; Given that the dihedral angle between △CBD and trapezoid ABDE = 180º by construction;

the dihedral angle between ▢BDMN & ▢BKLD = 90º; the dihedral angle between trapezoid ABDE &

▢BKLD =∠ε by construction;  => dihedral angle between△BCD and ▢BDMN ∠φ”=∠φ
∴ for∠BAK=∠DEL=∠BCD=∠θ ABCDE is flat Q.E.D

Introducing the Weaire Phelan approximation of minimum tension surfaces

The Polymorphic Elastegrity also yielded through folding the Weaire Phelan mono-

dodecahedron fig. 11(c). When arranged in the approximation of the minimum tension surface
of bubbles,  it leaves tetradecahedra fig. 11(d) as empty space in between fig. 11(e).
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Several authors of this article participated in the 2019 Weaire Phelan workshop at ICERM

organized by Glenn Whitney fig. 11(f).8 We connected edges of three lengths needed to

assemble the Weaire Phelan matrix Fig. 11(g), which was an improvement by 0.3% in area9, 10

over Lord Kelvin’s bubble approximation11 Fig 11(b).

(a)                             (b)                           (c)                        (d)                         (e)                       (f)                    (g)

Fig. 11 Minimum surface tension (a) Bubbles; (b) Lord Kelvin’s approximation, truncated octahedron 6 squares, 8 hexagons; (c)

Weare Phelan 1993 monododecahedron 4 equal sides and one longer, 106.6°, 102.6°, 121.6°, 106.6°, 102.6°; (d) Weaire Phelan

tetradecahedron 1887: 4 pentagons congruent to the monododecahedral pentagons; 8 narrow pentagons, 107.02°, 107.02°,

101.54°, 112.21°, 112.21°; 2 hexagons with two parallel sides equal to the monodecahedral pentagon longer side, 126.87°,

116.57°, 116.57°, 126.87°, 116.57°, 116.57°; (e) 2 tetradecahedra & 2 monododecahedra; (f) Glenn Whitney; (g) WP ICERM 2019.

In an epiphany, during the workshop, it became clear that the Weaire Phelan mono-

dodecahedron lays along the polymorphic elastegrity path that had already been proven to

exist between a rhombic dodecahedron and a cube. It could therefore be obtained through

folding paper. Folding the flaps to the exact 121.59° and connecting the paper Weaire Phelan

monopododecadra with wire and coffee stirrers would outline the WP  tetradecahedra fig 12(a)

in the space in between. Appropriate for G4G14 the tetradecahedron, is a polyhedron with

fourteen faces, and was literally pulled out of thin air to present and report at the 2022 G4G.

(a)                  (b)                            (c)                                 (d)                            (e)                                (f)                      (g)

Fig. 12 (a) The polymorphic elastegrity folded as a monododecahedron, one angle 90º; (b) Paper folded WP monododecahedron

121.6°, 2X106.6°, 2X102.6°; (c) Study model of the tetradecahedron outlined with wire and coffee stirrers between paper folded

WP monododecahedra; (d) Sketchup model of paper folded WP; (d) Paper model of WP monodocahedra, 3D printed connectors

and straws; (f) and (g) 3D printed WP monododecahedra make the regularity of the WP pattern evident.

(a)                                 (b)                                   (c)                                 (d)                                   (e)                             (f)

Fig. 13 (a) Digital flythrough WP showing regular staggered rows of monododecahedra; (b) View through a column of

tetradecahedra showing alternating orientation of hexagons; (c) View through the narrow tetradecahedral pentagons; (d) Bird’s eye

view and (e) worm’s eye view of the Beijing Olympics Aquatic Center; (f) Interior detail of the Beijing Olympics Aquatic Center.

This article started by citing Anni Albers’s admonition to start designing by discovering simple

rules and then using them to create complexity and interest. The Beijing Olympic Pool, also

known as the “Water Cube”, is an example of starting with the highly regular Weaire Phelan

structure. The engineer Tristram Carfrae suggested it when the architect Chris Bosse, now of

Laboratory of Visionary Architecture (LAVA) proposed a cube of bubbles for the Beijing

Olympics Aquatic Center. The architect worked closely with the engineer to choose the plane
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to cut through the regular pattern to create interest evoking irregular suds. Given that the

structure had physical size, the section needed not to have nodes either just included or just

excluded. They cut through the roof with two planes seven meters apart and through the walls

three and a half meters apart. Underpinning the whimsical appearance of bubbles of the facade

are the simple rules of the Weaire Phelan regular geometry.12

Epilogue

Polymorphic Elastegrity was discovered at the intersection of two experiments arising from the

Bauhaus approach to design. We saw above how a failed experiment to create an easier

assembly and more stable paper crystal in 1982 resulted in this new shape-shifting structure

with interesting geometry. Beyond math a matrix of Polymorphic Elastegrity units exhibits -1

Negative Poisson’s Ratio along the tetrahedral axes. Unrelated to the better known Poisson’s

distribution in statistics, Poisson’s ratio is the ratio of lateral change over the axial resulting in

response to an applied force. For example the ratio of how much a material expands laterally

over how much it shortens when squeezed or how much it gets thinner over elongation under

tension. Negative is the “perverse” material property as the New York Times called it,13 when a

material gets smaller laterally when squeezed down and wider then pulled. The cooperative

retraction of thirty-six elastic hinges suggests engineering applications for energy absorption.

Since 2019 the Space Grant Opportunities in NASA STEM -NNX15AI06H has funded students

with summer stipends to work on the Polymorphic Elastegrity. Physical and in-silico models

(as engineers call animations) brought us closer to engineering applications in

shock absorption similar to the tensegrity NASA lander, mechanical analog

sensors similar to tensegrity sensors; that could withstand  800º on the Venus

surface; and augments the tensegrity conjecture in biology,14 opening avenues for

discovering life on other planets. This work has been reported in the annual

reports to NASA: Chris Norcross 2019, Kenneth Mendez 2020, Chelsy Luis 2021.

Fig. 14 Daanish Aleem Qureshi, 2022 recipient of NASA Scholar Summer Stipend working on a matrix of

Polymorphic Elastegrities at the G4G14 offsite event, similar to the one he was funded to help with a sphere indentation

experiment to measure auxeticity, which is a synonym for exhibiting Negative Poisson’s Ratio or NPR, as is it is often abbreviated.
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Gathering for Gardeners:

A Randomized Approach to Pattern Formation

Shunhao Oh and Dana Randall
Georgia Institute of Technology

As any gardener can attest, ants love to congregate. They relentlessly gather
around crumbs, form robust trails, and carry out a variety of simple, coordi-
nated tasks that address the colony’s current needs. But how do they coordi-
nate when no single ant is in charge, their communication is limited, and the
necessary task may change depending on external conditions known only to
a select few? Somehow, ants seem to know exactly when a ripened piece of
fruit drops to the ground and, much to the gardener’s chagrin, waste no time
gathering in a coordinated feeding frenzy. On the other hand, once the food is
depleted or they are chased off by an angry gardener, they quickly disperse, all
simultaneously executing a new protocol to forage or to run for their lives.

While it is difficult to know exactly what clever ants can accomplish, or
how they coordinate so effectively, one can try to model ant-like behaviors
with dumbed down self-organizing particle systems, where particles, rather than
ants, interact via very rudimentary instructions. The question of what can be
computed in such a computationally limited, distributed setting is especially
compelling because many engineered, physical, and social sciences contain col-
lectives known to self-organize.

Gathering (or aggregation) is an illustrative example. How can a system of
homogeneous particles, with no global orientation or communication, be made
to aggregate, forming tight-knit communities, or disperse, the inverse action
where they spread out and explore? Aggregation and dispersion protocols are
found in many natural systems, such as fire ants gathering to form rafts [1]
and honey bees communicating foraging patterns by swarming closely within
their hives [4]. While each individual ant or bee lacks global knowledge of the
collective, it can take cues from its immediate neighbors to achieve global coor-
dination. Similarly, systems of heterogeneous (say, colored) particles can self-
organize into either separated (or segregated) and integrated states, depending
on what is most advantageous to the group based on external circumstances.
Examples of separation include molecules exhibiting attractive and repulsive
forces, strains of bacteria competing for resources while also collaborating to-
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wards common goals [6, 7], and social insects acting belligerently or friendly
towards other colonies when threats are introduced or removed [5].

A goal for understanding collective behaviors is to find distributed, local
algorithms that, when run by each particle independently and concurrently,
result in emergent self-organization such as separation or integration of color
classes. In [2] and [3], we presented simple stochastic, distributed algorithms
that provably achieve aggregation/dispersion and separation/integration by ad-
justing just a couple of parameters slightly that control each particle’s affinity
for other nearest neighbors or nearest neighbors of the same color. Adjust-
ing these parameters causes the entire system to undergo a system-wide phase
change. Thus, each of these collective behaviors can be viewed as emergent
global outcomes of local interactions, much like phase transitions that turn wa-
ter into ice or spontaneously magnetize a metal below critical temperatures.

Taking inspiration from these models of biological and physical systems, we
now ask what happens if the particles are even more particular about what
types of neighbors they prefer. Rather than simply preferring more neighbors,
or more like-colored neighbors, what if the particles strongly prefer to have
exactly 4 neighbors? What if they prefer 3 red and 3 blue neighbors? Should we
expect more phase changes where particles are disordered below some threshold
and begin to form long-range organization above some other threshold, much
as we see in many particle systems studied in statistical physics?

We explore such questions here with particles that are red or blue and
reside on some finite region of the triangular lattice (we add toroidal boundary
conditions by identifying left and right sides, as well as top and bottom sides,
of a large rhomboidal region so that every vertex on the lattice region has
exactly six neighbors). Each vertex is then occupied by a red or blue particle,
and particles can swap places, with each trying to find a location where its
neighbors have the color ratios they most prefer.

As expected, striking patterns emerge! This is not entirely surprising be-
cause we can view red and blue particles as species of ants, and if each prefer
six same colored neighbors to five, and five is favored over four, and so forth
then we are mimicking the separation algorithm that is known to gather the
particles of each color class together. We demonstrate that using other types of
neighbor-aware particles that favor exactly 3 neighbors sharing their color, or 4,
we can get striking patterns of global coordination. What is even more intrigu-
ing (to us!) is that the emergent patterns are highly dependent on the density
of red particles in the mixture. In addition to long-range order emerging when
local affinities are strong enough, we also find remarkable phase changes among
emergent patterns as the density is increased, with stripes morphing to polka
dots starting locally and spreading over the entire region. Here we demonstrate
this behavior with simulations and conjectures.
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Neighbor-Aware Particles

Let’s imagine red and blue colored particles fully occupying all the vertices of a
region on the triangular lattice with sites and toroidal (or periodic) boundary
conditions. We call this region G△ = (V,E), where V are the vertices and E
are the edges. We are going to fix the proportion ρ = Nred/N of red particles,
where |V | = N = Nred + Nblue, the number of particles of each color. The
particles know their own color and the colors of each of their immediate six
neighbors, and each particle knows its homophily preference, i.e., what ratios of
like and unlike colors it prefers in its immediate neighborhood.

First, consider what the configurations will look like if we try to maximize
the number of particles that achieve their homophily preferences. As an exam-
ple, consider a region with ρ = .5 where all particles have homophily preference
of 2, so they want exactly 2 neighbors to have their color and the remaining
4 to have the other color. Figure 1.a shows one way that all vertices can si-
multaneously achieve this goal. Similarly, when ρ = .5 and each particle wants
3 neighbors of each color, then again each particle can satisfy its homophily
preference of 3, as shown in Figure 1.b. In Figure 1.c we see how to satisfy
every particle’s homophily preference when ρ = 0.5 and each particle favors 4
neighbors of its own color.

But the striped patterns shown in Figures 1.a, 1.b and 1.c only appear when
there are equal numbers of red and blue particles. As we start modifying the
density of each, we cannot always make every particle happy and some vertices
need to be “sacrificed” to help others. Figures 1.d, 1.e and 1.f show patterns
where the maximum number of particles achieving satisfy their homophily pref-
erences. Notice that in Figure 1.d when vertices want 4 like colored neighbors
and ρ = 0.25, the blue vertices all achieve optimal homophily but none of the
red vertices do. We say that this configuration has an efficiency ξ of 3/4 because
75% of the vertices satisfy their homophily preferences.

The last two examples in Figure 2 are for homophily preference 3. In Fig-
ure 2.e, ρ = 1/3 and the efficiency is ξ = 2/3 (meaning a third of the particles
are red and the efficiency comes from the blue vertices, which all have the
desired three blue neighbors). In Figure 2.f, ρ = 6/13 and the efficiency is
ξ = 12/13 (since all vertices except for the centers of the blue hexagons have
the desired homophily preference). The first three examples in this figure all
achieve efficiency 1 since all vertices have their optimal homophily values.
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(a) degree 2, ρ = 0.5 (b) degree 3, ρ = 0.5

(c) degree 4, ρ = 0.5 (d) degree 4, ρ = 0.25

(e) degree 3, ρ = 1/3 (f) degree 3, ρ = 6/13

Figure 1: Maximizing vertices with the desired degree at specified densities.
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(a) degree 4, ρ = 0.5 . (b) degree 4, ρ = 0.25 .

(c) degree 2, ρ = 0.5 . (d) degree 4, ρ = 0.45 .

Figure 2: Simulations of the probabilistic model with various homophily pref-
erences and densities.

The Probabilistic Setting

A far more compelling situation arises when we define preferences in terms of a
probability distribution that, rather than trying to maximize the number of par-
ticles that achieve their homophily preferences, just makes such configurations
more likely. To do this, we define the weight of any particular configuration to
be the product of the individual particles’ satisfaction with the colors of their
neighbors. More precisely, fix λ0, λ1, ..., λ6 and for each i from 0 to 6, let λi > 0
be the relative homophily values that a particle derives when exactly i of its
neighbors agree with its own color. Let Ω be the set of valid configurations, i.e.,
those with ρN red vertices and N − ρN blue vertices. For any configuration
σ ∈ Ω, we define its weight as wt(σ) =

∏
v∈V λs(v), where s(v) is the number

of neighbors w of v such that σ(v) = σ(w) When we normalize this weight by
dividing by the sum of the weights of all possible configurations, we turn this
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into a probability distribution:

π(σ) =
∏

v∈V

λs(v)/Z,

where
Z =

∑

τ∈Ω

∏

v∈V

λs(v).

For a homophily preference of 4, for example, we may set λ4 > 1 and for
all i ̸= 4, we set λi = 1. Note that as λ4 gets larger, the distribution starts
favoring configurations that have an increasing number of vertices with the
desired homophily values.

Figure 2.a shows what happens if we have homophily preference 4 and den-
sity ρ = 0.5. The orientation of the stripes that emerge can lie in any of three
directions and there will always be some defects throughout the pattern that
arise randomly. In Figure 2.b we show a homophily preference of 4 and density
ρ = 0.25. Here we see a grid-like pattern emerging. In Figure 2.c, we have ho-
mophily preference 2 with density ρ = 0.5. Lines similar to those in Figure 1.a
form, but the sporadic degree 3 vertices that arise in the probabilistic setting
can cause the lines to curve and wrap around.

In Figure 2.d we see something different. When ρ = 0.45, it is not possible to
have as many vertices fulfill their homophily preferences as when the density was
0.25 or 0.5. At such intermediate densities, the best one could do is to have part
of the region produce a “ρ = 0.25” type pattern and part produce a “ρ = 0.5”
type pattern. This is exactly what emerges when sampling configurations at this
intermediate density. Moreover, by nearly minimizing the boundary between
these two patterns, we reduce the number of vertices that fail to achieve either
nice pattern, and this is also what is observed in Figure 2.d.

We call configurations with patterns that fill the whole region pure, such
as Figures 2.a and 2.b, and configurations that show multiple patterns simul-
taneously mixed, as in Figure 2.d. Note that since 0.45 is four-fifths the way
between 0.25 and 0.5, we expect to see about 4/5 of the region looking like a
pure pattern arising from ρ = 0.25 and 1/5 looking like the pattern arising from
ρ = 0.5. In other words, since there is no pure pattern occuring at ρ = 0.45, the
particle system compromises by optimally mixing the two closest pure patterns
in each direction.

Conjectures

Graphically, we can map out what happens for all ρ ∈ [0, 1] for homophily
preference 4 on a diagram. Recall that each “pure pattern” is associated with a
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ρ = 0.06 ρ = 0.50

ρ = 0.12 ρ = 0.70

ρ = 0.25 ρ = 0.80

ρ = 0.40 ρ = 0.90

Figure 3: The emergent structures at various densities when we favor degree 4.
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Figure 4: Plot of the obtainable efficiency ξ vs density ρ for homophily prefer-
ence 4, with the five pure patterns.

specific density ρ, and a specific efficiency. We can plot these pure patterns on
a graph of efficiency vs density. There are five such pure patterns for homophily
preference 4, which we will first discuss since it represents the more common
situation. These are marked as crosses on Figure 4.

Homophily preference 4: For densities in between pure patterns for ho-
mophily preference 4, such as ρ = 0.45 as shown in Figure 2.d, a mixture of two
patterns is obtained. We expect the boundary between these patterns to have
length on the order O(

√

N) between these patterns, where N is the number
of sites. This means that the efficiency of these non-pure configurations, when
averaged over the N sites, is asymptotically equivalent to the interpolated ef-
ficiencies of the two pure patterns it lies between. Thus, in between the pure
patterns, we draw straight lines representing the optimal efficiency obtainable
at each density, as the number of sites go to infinity. The efficiencies on the
lines arise by mixing specific proportions of the two adjacent patterns.
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0 1/3 6/13 1/2 7/13 2/3 1

Figure 5: Plot of the obtainable efficiency ξ vs density ρ for homophily prefer-
ence 3, along with the seven pure patterns corresponding to the red points.

Homophily preference 3: An unusual situation occurs in the case of ho-
mophily preference 3, however. The pure patterns correspond to densities 0,
1/3, 6/13, 1/2, 7/13, 2/3 and 1, with efficiencies 0, 2/3, 12/13, 1, 12/13, 2/3
and 0, respectively. Plotting these on a graph of efficiency vs density, we find
that the first four points and the last four points are collinear (see Figure 5).
The significance of this is that on densities ρ that do not coincide with pure
patterns, the interpolated efficiencies can be asymptotically achieved by a vari-
ety of mixtures of pure patterns. For example, at red particle density ρ = 0.25,
one simulation may yield a mixture of the patterns corresponding to efficiencies
0 and 6/13, while another may yield a mixture of the patterns corresponding
to efficiencies 1/3 and 1/2. This is in contrast to the homophily preference 4
case, where patterns an intermediate density will always be a mixture of pure
patterns immediately to the left and to the right on the plot. The mixed pat-
terns arising from homophily value 3 give rise to far less predictable, but very
intriguing, emergent behaviors.
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Magic and problems from half a millennium ago:
The recreational problems of

Tratado da Pratica D’arismetyca
by Gaspar Nycolas, 1519

Jorge Nuno Silva∗ & Pedro J. Freitas†

The Tratado in its context

By the end of the 15th and early 16th centuries, commercial activity in
Europe had become very intense, promoting the transition from a feudal
economic system to another in which trade took center stage. In this con-
text, two types of mathematical publications appeared in Portugal: those
supporting the navigations and those dealing with problems related to trade.

Regarding the field of Arithmetics, there were about 40 manuals pub-
lished in Europe between 1472 and 1519. (Almeida 1994, p. 25). This pro-
liferation may have accompanied the establishment of abacus schools, es-
pecially in Italy, after the publication of Fibonacci’s Liber Abaci in 1202,
which introduced the use of Indo-Arabic numerals and related algorithms.

In Portugal, three arithmetical treatises were printed, in Portuguese, at
the beginning of the 16th century. The first one was Tratado da Pratica
D’arismetyca by Gaspar Nycolas (Nycolas 1519), which the authors have
studied in order to to produce a reedition, to appear soon, and which will
be the theme of this paper. The book was first published in 1519 and saw
eleven more re-editions (Almeida 1994, p. 82) until the 18th century, the last
one in 1716. The author of this text prepared a modern version of Nycolas’
book, to appear soon in the Fundação Calouste Gulbenkian’s catalogue.1
The other two treatises were Prática Darismética by Rui Mendes in 1540

∗Ludus Association; CIUHCT, University of Lisbon. jnsilva@cal.berkeley.edu.
†CIUHCT, FCUL, University of Lisbon. pjfreitas@fc.ul.pt.
1https://gulbenkian.pt/en/publications/
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(Mendes 1540), and Tratado da Arte de Arismética by Bento Fernandes in
1555 (Fernandes 1555).

They all follow a similar structure, starting with the organised presenta-
tion of arithmetical procedures, either abstractly or immediately applied to
practical cases. It should be noted that all of them use, from the beginning,
the Indo-Arabic numerals, completely abandoning the Roman numerals and
the operations performed with them, such as the so-called conta castelhana,
still present in some Spanish textbooks of this period, and which curiously
would reappear in a later Portuguese textbook, Flor Necessária da Aris-
mética by Afonso Guiral and Pacheco, in 1624. The positional notation, typ-
ical of the Indo-Arabic system, greatly facilitates written algorithms which,
unlike abacuses, keep the intermediate steps visible at all times, available
for inspection.

Focosing now on the arithmetic by Gaspar Nycolas, we see that, after
the description of this numerical writing, we move on to the four operations
and the algorithms for performing them, which are similar to those we use
today. The only algorithm that is considerably different is that of division:
the books use the galley division.

After the description of the four operations, we move on to calculation
rules, such as the rule of three, which occupies several sections, and which is
presented with several variants (which can be considered implementations of
the compound rule of three, nowadays abandoned because it can be reduced
to iterated use of the of the rule of three). Double false position, an ancient
method for solving linear equations, is also used systematically. There are
several sections devoted to fractions, and to the extension of the calculation
rules to cases where the data are fractional rather than integer. Then we find
some sections devoted to practical problems on taxes or bartering. There
are sections mainly of numerical problems, a long section on geometry, and
another on methods for extracting square and cubic roots. At the end of the
book there are several problems on silver alloys.

Contrary to the pedagogical principles to which we are accustomed to-
day, the solution to these problems is mostly presented without explanation
— the author begins the resolution with the expression “Do it this way”
and describes the method for solving the problem (in many cases it is not
immediately clear why the given resolution actually solves the problem).
The motivation, clearly, was to mechanise these methods so that the reader
could put them into practice expediently in the daily problems of commerce.

Alongside these pragmatic considerations, we find a long collection of
problems of a recreational nature. It was already a medieval tradition, that
of accompanying the mathematical textbooks by lists of problems intended

2
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to develop reasoning and to entertain. Gaspar Nycolas explicitly refers to
Luca Pacioli’s Summa as a source for these problems, but some of them
come from older traditions, both medieval European and classical Greek.
Some of these problems can be solved using the methods presented earlier
in the book, but others need an ad hoc reasoning, or, as the author says, can
only be solved “by fantasy”, that is, by thinking of a resolution specifically
for the given problem.

For the sources of problems, we searched for previous occurrences in the
literature, namely in the most well-known collections, namely: Metrodorus’
Greek Anthology (Paton 1980), Alcuinus’ Propositiones ad Acuendos Ju-
venes (Hadley and Singmaster 1992), Fibonacci’s Liber Abaci (Sigler 2002),
Treviso’s Arithmetic (Swetz and Smith 1987), Pamiers’ Arithmetic (Sesiano
2018), Chuquet’s Le Treviso (Chuquet 1881, Chuquet and Marre 1881),
Summa (Pacioli 1494) and De viribus quantitatis (Pacioli ca. 1509, Hirth
2015) by Luca Pacioli and Conpusicion de la arte de la arismetica y Junta-
mente de geometria by Juan Ortega (Ortega 1512.

Recreational mathematics, often immersed in works of another nature,
has often been little noticed, even decried, by scholars. However, it is in-
creasingly becoming unavoidable in the historical approach. Its roots are
thousands of years old and it can no longer be denied that recreational
motivation is present in a relevant part of the evolution of mathematics
(Singmaster 2017). Of the three arithmetic books we mentioned, it is the
one by Gaspar Nycolas that devotes the most time to topics of recreational
mathematics, about a third of the book.

A few selected problems

Sum and product equal

Give me a number that is the same, either added and multiplied.
You may know that there is no other whole number except 2,
because 2 and 2 is 4 and 2 times 2 is 4. However, let’s exclude
this one, and try and find two numbers that give the same result
both added and multiplied.

Here’s a general rule for such questions. Take any number, which-
ever you want, and divide it by one of its parts, whichever you
want, and whatever is missing from that part, you will divide
it again by that remainder, and whatever comes, these are the
numbers demanded.

3



MATH | 180

For example, take 7, divide by 4 and you get 1 and 3

4
, this is

one of the numbers. To know the other one, take the difference
between 7 and 4, which is 3. Divide 7 by 3 and you get 2 and a
third, this will be the other number. The sum of these numbers
is 1 and 3

4
plus 2 and a third, which is 4 and 1

12
· If you now

multiply one and 3

4
by 2 and 1

3
you get the same 4 and 1

12
·

This problem starts with the following question: find a number x such
that 2x = x2. There are only two numbers with this property, 0 and 2. The
text suggests that this question would be something of a riddle, as it adds
that when asked, one should immediately exclude the number 2. Next, the
problem is slightly modified: two numbers are now asked such that their
sum is equal to the product. The author then gives a rule for finding such
numbers: write a number a as the sum of two parts a = b + c and take
the numbers a/b and a/c. And indeed, their sum and product is a2/bc. The
author gives no indication about the origin of this method.

Generating squares

Give me a number that, if you take away 11 from it, it becomes
a square, and if you put 10 on it, it also becomes a square.

This is the method: join these quantities that you want to take
and put, and from that sum always take one. Divide in the middle
what remains, and that half always multiply in itself. To this
multiplication you will add that amount that you want to take
it out, and after all this, you’ll get be the number you were asked
for.

In this example: add 10 and 11, you get 21. Take 1 and 20 remain,
take half of that, which is 10. These I say multiply in themselves,
and you will make 100. To these you must add the amount you
want to take out, and you get 111. And this is the number that if
you take 11 from it, you get a hundred, which is a square, whose
root is 10, and if you add 10 you will also get a square number,
which is 121 whose root is 11.

We are looking for a number x such that
{

x− 11 = □

x+ 10 = □

4
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where □ represents a generic perfect square. The procedure given by the
author leads to the solution x = 111 (111− 11 = 102, 111 + 10 = 112).

In general, given two integers a and b, with odd sum s, one is asked to
calculate

(

s− 1

2

)2

+ a

Naturally, subtracting a, the result is a perfect square. If we add b to it, we
get

(

s− 1

2

)2

+ s =
s
2 + 2s+ 1

4
=

(

s+ 1

2

)2

The perfect squares obtained by this method are always consecutive. Other
solutions can be obtained, noting that 1 + 3 + 5 + · · ·+ (2n− 1) = n

2, and
therefore the difference of two squares, possibly non-consecutive, is always
the sum of consecutive odd numbers. In this case, we can write 21 = 5+7+9,
so 21 = 1 + · · · + 9 − (1 + 3) = 25 − 4, and therefore 4 + 11 = 15 would
be another solution. As 21 cannot otherwise be expressed as the sum of
consecutive odd numbers, these are the only solutions on the integers.

A broken weight
A man had a stone that weighed 40 arráteis, it hit the ground
and was broken in four pieces. With these 4 pieces he produced
any number of arráteis as he was asked for, from one to 40. Now
I demand how much each of them weighed.
Know that this one has no rule [...] it is made of fantasy.2 Know
that one of the pieces has one arrátel another has three and the
other has 9, which is the square of three, and the other has 27,
whose cubic root is three. But this rule is not general, it is by
fantasy. So you will say that from the four numbers 1, 3, 9, and
27 the four pieces were made.

This problem appears already in Fibonacci (Sigler 2002, p. 420), Chu-
quet (Chuquet and Marre 1881, p. 451, cxlii) and in Pacioli (Pacioli 1494,
F97, 34). However, its origin is more remote, Topfke references a Persian
occurrence in the xi century (see Tropfke et al. 1980, p. 633).

Presumably the problem concerns the use of a balance scale, with two
plates, in each of which you can place either merchandise or weights. Thus,

2Here, “fantasy” must be understood as reasoning without application of any standard-
ised procedure.
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we look for four positive integers, x1, x2, x3, x4, whose sum is 40 and such
that any natural n, 1 ⩽ n ⩽ 40, can be expressed as a linear combination

n = α1x1 + α2x2 + α3x3 + α4x4

where the coefficients αi can take the values   −1, 0, 1. The author presents
the solution, justifying it with “fantasy”. Chuquet states that the sequence
of weights starts with 1 and then each weight is one unit plus twice the sum
of those that precede it. Pacioli starts with 1 and successively multiplies by
3, which is equivalent. Fibonacci mentions both procedures.

There is an interesting detail in the way the author poses the problem:
in no other source the four weights are the result of a larger object being
broken. This particular setup tells us that probably Nycolas had access to
another source, possibly not so well-known as the ones we refer to.

Bags
There are two bags, one holds 8 alqueires of wheat and the other
holds two. Now, I unsew them and make a bag that’s as tall as
they were before. I ask how many alqueires the big sack holds.
Do it this way. Combine 2 with 8 and that’s 10, save these. Now
multiply the bags against each other, meaning 2 times 8, which
is 16, take the root which is 4, double it, and it is 8. These 8
together with the 10 that I ordered you to save and are 18, and
these many alqueires will the big sack hold.

Let’s assume that sacks are obtained from two overlapping rectangles of
fabric sewn along three sides, like the so-called burlap sacks. It is natural
to assume that the volume of each bag is proportional to the square of the
base seam. As the height is constant in this problem, we can suppose it to
be unitary and, being the measures of the base seams c1 and c2, the volumes
will be 8 = c2

1
k, 2 = c2

2
k, for some constant k. Joining the pieces of cloth, we

obtain a sack with a seam at the base measuring c1 + c2. The volume will
then be

(c1 + c2)
2k = c21k + 2c1c2k + c22k = c21k + 2

√

c2
1
kc2

2
k + c22k = 8 + 8 + 2 = 18

as in the text. Alternatively, if we consider the sacks as the side surfaces of
cylinders, assuming unit height, the problem is reduced to determining the
area of   the circle whose perimeter is the sum of the perimeters of two circles
of areas 8 and 2. The result is, again, 18.

6
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Break 9
Divide 9 into two parts such that, dividing the greater by the
smaller, I get 19. This is the rule: add one to the number that
you want to obtain, this will be your divisor, and the dividend
is 9. Therefore, divide 9 by 20, and you get 9/20, this is one of
the numbers. The other will be 811

20
as you can prove.

The system to be solved is x + y = S and x/y = Q (with S = 9 and
Q = 19). From the second equation, we get x = Qy, and substituting into
the first equation, we get (Q+ 1)y = S, which is the solution shown.

Conclusion
The Tratado de Prática Darismética can be seen as a source for understand-
ing the commercial mathematics of the 16th century, crucial for Portugal
and relevant for the rest of Europe. In the teaching tradition of practi-
cal mathematics, Nycolas’ text shines as a sophisticated pedagogical book.
Including both pragmatic exercises, solved by application of general rules,
together with recreational problems, which entertain with their appeal to
imagination and “fantasy”, the author offers the students in abacus schools
(and, more generally, those training for commercial matters) a glimpse of
abstract rigorous thought in a ludic context.

We believe that the Tratado, being the first book on mathematics printed
in Portugal, contributed decisively to the dissemination of mathematical
teaching, now aided by the printing press, which permitted a much faster
and secure expansion of the subject. Its popularity can be gauged by the
number of editions of the book (up until the 18th century), meaning that
it became a source of mathematical learning for several generations of Por-
tuguese merchants, accountants, and likely also people interested in a good
problem to wrap their heads around.

7
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Traveling through the Sierpinski carpet and

Menger sponge

Derek Smith, Lafayette College

smithder@lafayette.edu

The Sierpinski carpet is an intriguing 2-dimensional fractal. You can con-

struct the carpet by taking a solid square of side length 1, dividing it into nine

sub-squares of side length 1/3, and removing the “open” sub-square in the mid-

dle, i.e. remove all of the points of that middle sub-square except for the points

on its boundary edges. For each of the eight remaining sub-squares, repeat the

procedure above by dividing it into 9 sub-sub-squares and removing the middle

one; and for each of the 64 remaining sub-sub-subsquares repeat the procedure;

and so on; keep going; you’re not done yet! The limiting object is the Sierpinski

carpet. The red figure below is just an approximation of it, after repeating the

subdividing and removal procedure only 4 times, but it should be enough to

give you a good sense of things.

Ant

Yummy sugar

Problem 325 in the April 2015 issue of Math Horizons asked the following

question. An ant starts at one corner of the fractal and wishes to travel to the

opposite corner while staying on the fractal. It’s clear that the ant can do this

by traveling a distance of 2, simply by moving along two exterior edges. But can

the ant get to the opposite corner by a shorter path? What is the shortest path

the ant can take to get from one corner of the Sierpinski carpet to the opposite

corner while staying on the fractal and not falling into any open square hole?

Don’t go to page 2 until you’ve tried your best to get a path whose

length is shorter than 2!
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In fact, the ant can do much better than a distance of 2 by going through the
interior of the carpet. If the only paths through the carpet use line segments
parallel to the outer edges of the carpet, the ant wouldn’t be able to beat a
distance of 2. But there are line segments in the carpet that have slopes of
1/2, 1, 2, and their negatives! The figure on the left below shows one of two
shortest possible paths from the lower left corner to the upper right corner, with
a total distance of (2/3)

√
5 ≈ 1.49. Try to use the self­similar structure of the

carpet and the positions of the green and blue holes relative to the lower line
segment of slope 1/2 to convince yourself that this path is, indeed, contained in
the Sierpinski carpet. Also, try to find a line segment in the carpet of slope 1!

Ant

Yummy sugar

A 3­dimensional fractal that is closely related to the Sierpinski carpet is the
Menger sponge: it is a cube with Sierpinski carpets on its faces, and with open
tunnels bored straight through the cube where there are open square holes in
the carpet faces. An approximation of the Menger sponge is shown above in
green.

The problem in Math Horizons had a second part. Suppose a termite wants
to travel from one corner of the Menger sponge to the opposite corner. A path
of length 3 can be had by following three exterior edges of the sponge. . . but can
the termite do better? Maybe it’s via a path that stays on the outer Sierpinski
carpet faces of the sponge, but we also allow the termine to bore through the
sponge, always staying in the green material of the sponge and avoiding any
removed open tunnels. What’s the shortest possible route?

Try to use what you now know about paths in the Sierpinski carpet to help
you find a path that stays on the surface of the Menger sponge and has length
less than 5/2. Then, for the real challenge: try to find a path that can be bored
through the sponge and has length less than 2!

Good luck! If you would like some hints, or some good references on geodesic
paths in fractals, just send me an email. As for the shortest possible path in the
Menger sponge from one corner to the opposite corner. . . this problem remains
unsolved.

This work is joint with Ethan Berkove.
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An Unexpected Appearance

(Or Look Ma, No Rectangles)

Robert W. Vallin, Department of Mathematics, Lamar University

Beaumont, TX 77710 USA robert.vallin@lamar.edu

November 21, 2019

Many papers are a straightforward presentation of the facts,but sometimes there are
papers containing a nice surprise. Two of the more exciting types of these gems in math-
ematics are an object with a counter-intuitive property and the surprise appearance of
something from an unrelated topic. In this note we have both of those elements. Our
surprise appearance comes from a particular instance in Penney’s Game which itself comes
from a fun exercise whose base idea is counter-intuitive. This begins with a problem sub-
mitted by Walter Penney to the Journal of Recreational Mathematics ([6]) in 1969.

Although in a sequence of coin flips, any given consecutive set of,

say, three flips is equally likely to be one of the eight possible,

i.e., HHH, HHT, HTH, HTT, THH, THT, TTH, or TTT, it is rather peculiar

that one sequence of three is not necessarily equally likely to appear

first as another set of three. This fact can be illustrated by the

following game: you and your opponent each ante a penny. Each selects

a pattern of three, and the umpire tosses a coin until one of the two

patterns appears, awarding the antes to the player who chose that pattern.

Your opponent picks HHH; you pick HTH. The odds, you will find, are

in your favor. By how much?

The ensuing game became popular after an appearance in Martin Gardner’s Scientific
American column ([2]).

Penney’s Game is a two-player game played via the flipping of a fair coin. Player I
picks a sequence of Heads or Tails of length 3 (it can be any agreed-upon length, but in
most all literature it is length 3) and makes his choice known. Player II then states her
own sequence of length 3. An umpire then tosses the coin until one of the two sequences
appears as a consecutive subsequence of the coin flips. The player whose sequence appears
first is the winner.
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This is one of the members of the collection of non-transitive games. Just like Rock-
Paper-Scissors regardless of Player I’s decision, Player II always has a choice that puts the
odds in his/her favor. We show this with the following diagram where the better choice
lies at the base of the arrow.

Here are the probabilities associated with the diagram.

Player I’s Choice Player II’s Choice Probability Player II wins

HHH THH 7/8

HHT THH 3/4

HTH HHT 2/3

HTT HHT 2/3

THH TTH 2/3

THT TTH 2/3

TTH HTT 3/4

TTT HTT 7/8

Several methods exist to determine the result, including one using of martingales and one
due to John H. Conway that uses the binary representations of numbers ([1], [5], [4]).

In this note we focus on one specific situation: Player I has chosen HHT and Player II
HTT1. This leads us to the surprising appearance.

Assume for our (unfair) coin that p is the probability that the coin land on Tails. Define
x = P (HTT wins). We want to find x in terms of p. Now if the opening consists of a string
of T’s, this has no affect. Similarly, the first H gives neither player an advantage. So
assume we begin with n ≥ 0 T’s followed by one H:

T· · · TH.

After the H appears in order for Player I to not lose we have either

T· · · THTT, where Player I wins

or
T· · · THTH, where we are in the same situation as T· · · TH.

1We realize that this is not optimal play with a fair coin. The interesting result arose when trying to

determine all optimal plays when the coin is not fair.
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Thus
x = p2 + p(1− p)x

which leads to

x = f(p) =
p2

1− p+ p2
.

Now the question is, “Can this be a fair game?” What should be the probability of landing
on Tails in order for P (HTT wins) = P (HHT wins) = 1/2? Setting f(p) = 1/2 and solving
for p yields

p =
−1 +

√

5

2
.

Here is our surprising appearance! This value of p is 1/Φ, where Φ is the Golden Ratio.
Although there is debate about the aesthetic properties of the Golden Ratio ([3]), this
result does show us Φ can appear when least expected.

A more thorough investigation of Penney’s Game using weighted coins can be found in
[7].
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Some Toroidal (and Non-toroidal) Rearrangement Puzzles

Barry A. Cipra

bcipra@rconnect.com

In 1998 I came across an etching by American artist Sol LeWitt 

titled “Straight Lines in Four Directions and All Their Possible 

Combinations,” in an exhibit catalog I found in a used bookstore 

on a trip to Norman, Oklahoma. (I was there for a conference on 

tornado forecasting.) The picture, redrawn below, is relatively 

straightforward: Each of the sixteen squares in a 4x4 array 

either does or doesn’t have a horizontal, vertical, up diagonal 

or down diagonal line segment drawn in it. 

	 	 	
Figure 1: The Sol LeWitt puzzle: 16 squares with all 

combinations of lines in horizontal, vertical, up-diagonal and 

down-diagonal directions.
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LeWitt arranges the four singlets across the top row, the six 

doublets across the next row and a half, the four triplets after 

that, then the square with line segments in all four directions, 

and finally the “empty” square with nothing at all in it. 

(Actually, LeWitt’s version does not include the empty square; 

in the book where I first saw the etching, the title appears 

there.) LeWitt’s arrangement also draws horizontal lines first, 

then verticals, then up diagonals, then down diagonals, e.g., 

the first three doublets are h-v, h-u, and h-d, followed by v-u 

and v-d, and ending with u-d. I call this kind of systematic 

approach to laying things out a “Sol LeWitt” arrangement.

My eye (more precisely, my brain…) noticed that some lines 

continue from one square to another, but rarely all the way 

across; only a few diagonals make it all the way from one outer 

edge of the array to another outer edge. This made me wonder: 

Could the sixteen squares be rearranged, without rotating any of 

them, into some different 4x4 array so that all lines *do* 

continue all the way from outer edge to outer edge?

It turns out they can. Not only that, but the solutions have a 

rather remarkable property: If you move the top row of squares 

to the bottom, or the left column to the right, you still have a 

solution. That is, the solutions are all “toroidal” - there's a 

wrap-around effect, as if the squares were drawn on a donut.

It isn’t surprising — it’s obvious, in fact - that the 

horizontal and vertical lines in a solution behave toroidally, 

but it is a surprise that the diagonals do as well; there’s 

nothing in the question itself that requires it. I eventually 

wrote this up for an earlier Gathering for Gardner; that paper 
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was published in *Puzzler’s Tribute: A Feast for the Mind* (pp. 

387-393).

I’ve tried since to come up with other, similar puzzles whose 

solutions all have the same toroidal property. So far my efforts 

have all failed. My first effort appeared in the aforementioned 

*Puzzler’s Tribute* paper:

	 	 	
Figure 2: A “Circle” LeWitt puzzle, with quarter circles drawn 

or not drawn, centered at the four corners of each square. 

The design criterion here is that each square either has or 

doesn’t have a quarter circle centered at each of its four 

corners, and the problem is to rearrange the given 4x4 array of 

squares, sans rotations, so that each arc continues from square 

to square.  There are 32 quarter circles in all, so a toroidal 
solution will have 8 complete circles (some of which appear as 

pairs of semicircles on opposite sides of the array). This 

puzzle does have toroidal solutions, but it also has solutions 

that are non-toroidal, so in that sense it’s a failure.



PUZZLES | 198

I later tried a variant I called the “Sine" LeWitt problem: 

Along each edge of each square, either do or don’t draw a half 

period of a sine wave, and then try to rearrange the squares, 

again without rotations, so that you get sets of sine curves 

running from left to right and top to bottom. (Note, there’s not 

much difference, visually, between a half sine wave and a 

quarter circle, especially when they’re hand drawn. This opens 

the possibility for an alternative puzzle in which the goal is 

to arrange the squares so that each quarter circle is part of a 

complete circle.)

	 	 	
Figure 3: The “Sine" LeWitt puzzle.

But like the Circle LeWitt puzzle, Sine LeWitt has both toroidal 

and non-toroidal solutions, so it’s another failure.

Before I go on, a word about rotations: I self-imposed the non-

rotation rule mainly to keep the sixteen squares all different. 

If, for example, you rotate the Sol LeWitt square with a single 

PUZZLES | 199

up diagonal by a quarter turn, it becomes a duplicate of the 

down-diagonal square. (Some squares, of course, don’t change if 

you rotate them by a quarter turn, and all squares are invariant 

under half turns.) I usually label the squares in my designs in 

a way that subtly discourages rotations. But if you want to 

rotate pieces, go right ahead. Just know, it’s a somewhat 

different problem then. In particular, if you allow rotations, 

the original Sol LeWitt problem has additional solutions that 

are *not* toroidal.

Recently, in 2019, I decided to turn the whole problem on its 

head, and designed a set of sixteen different squares for which 

no matter how you arrange them, you get continuity from square 

to square, with toroidality understood to occur at the outer 

edges:
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Figure 4: A toroidal looping puzzle, with labels to discourage 

rotation of squares, in “Sol LeWitt” order, with single-crossing 

squares first, then two-crossing squares, etc.. (Figure courtesy 

of Donna Dietz — see http://www.donnadietz.com/cipra/
CipraPuzzle.html for a playable version of the puzzle.)

Each square has four arcs in it, with each arc connecting two 

“thridpoints” (an invented term for midpoints that divide an 

interval into thirds) of adjacent edges; the key rule that 

limits the number of different patterns to 16 is that the two 

arcs emanating from the thridpoints on each edge must connect to 

thridpoints on *opposite* edges. The four-bit label in each 

square specifies whether the two arcs emanating from the 

thridpoints of the left, top, right, and bottom sides of the 

square, in that order, do or do not cross, with “1” if they do 

and “0” if they don’t. One of the labels’ roles is to discourage 

rotation, but you are, as before, welcome to refuse to be 

discouraged, and rotate to your heart’s content.

A note about “thridpoints”:  It’s a purely aesthetic choice to 
divide each side of the squares into thirds; any two points on 

each pair of sides will do; the important thing is that arcs 

continue from one square to the next. Indeed, one way to 

discourage rotations would be to choose “thridpoints” 

asymmetrically, so that continuations would be disrupted if any 

of the squares were rotated. It’s also an aesthetic choice to 

use quarter circles and quarter ellipses for the arcs; the 

essential property is continuity, not smoothness. An interesting 

question to ponder is whether aesthetic choices enhance the 

process of mathematical discovery or restrict it — or both!
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It occurred to me later to incorporate a consistent rule for 

passing one arc over another wherever there’s a crossing, which 

makes the set of squares, if you “fatten” the arcs so they look 

like stretches of string, look like this:

	
Figure 5: Toroidal looping puzzle “fattened” into over- and 

under-passes, arranged in "binary" fashion, with labels ordered 

from 0000=0 to 1111=15. (Photo courtesy of Pete Benson at 

CherryArborDesign.com - the puzzle can be purchased there.)

One pleasant surprise here is that, no matter how you rearrange 

the squares — and even if you allow rotations — the sequence of 



PUZZLES | 202

over- and under-crossings always alternates. Experts in knot 

theory undoubtedly see this as obvious; the rest of us can be 

content to scratch our heads or work out an ad-hoc proof.

I debuted this puzzle at the 2019 MOVES conference at the 

National Museum of Mathematics in New York, without specifying 

the particular puzzle I had in mind for the pieces.  You might 
notice I haven’t done so here either (yet). I did so in part to 

see what ideas others would come up with for what could be done 

with the pattern. I invite readers to pause at this point and 

think for themselves of something interesting to do with the 

pieces. (At MOVES I did not even hint that the pattern should be 

cut into separate squares; some people came up with the idea of 

cutting, but along the *arcs*, like a jigsaw puzzle.)

One person at MOVES (I’m sorry, I don’t remember who it was) 

observed that the pieces looked like “Tsuro” tiles, named after 

a popular board game of relatively recent vintage. Tsuro tiles 

also connect the “thridpoints” on the four sides of a sqare, and 

some of them are identical with the tiles in my puzzle, but 

others are not. I’m not sure what rule (if any) governs the set 

of Tsuro tiles; as mentioned above, I chose a rule that produces 

exactly 16 different patterns.

So here’s the challenge I had in mind when I invented the 

puzzle: Can you rearrange the tiles so that there is exactly one 

loop that runs through all the arcs of all the squares?

Since each tile has four arcs, there are 64 arcs in all.  It’s 
convenient to talk about the “length” of a loop as the number of 

separate arcs it consists of. If you patiently count them, you 

will find that the “binary” arrangement in Figure 5 has four 
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loops, each of length 16. The “Sol LeWitt” arrangement in Figure 

4 has a pair of loops of length 4 that are fairly easy to spot; 

the rest of its arcs belong to two loops, each of length 28.

	
Figure 6. Two loops, each of “length” 16, in the “binary” 

arrangement from Figure 5. (Note, the arcs here are poorly drawn 

quarter circles and ellipses, as evident from a careful look at 

the bottom rightmost tile.)

Notice that all those loop lengths are multiples of 4. It’s not 

hard to see that loop lengths must be even; a two-color 

checkerboard proof does the trick: Each loop passes back and 

forth between black and white squares. To show the number of 

arcs is a multiple of 4, use a four-coloring of 2x2 patches, say 

rows of alternating Red/Blue alternating with rows of 

alternating Green/Yellow (hence columns of alternating Red/Green 

alternating with columns of alternating Blue/Yellow). If, in 

following a loop, you pass from Red to Blue, you’ll next pass 

from Blue to Yellow no matter which way you turn (up or down), 

then from Yellow to Green, then from Green back to Red, after 
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which you’ll wind up repeating the color sequence again and 

again.

Peter Winkler took an interest in the puzzle at MOVES; by the 

end of the afternoon he had a proof that a single, 64-arc loop 

is impossible. A key observation was that all attempts finding a 

one-loop arrangement invariably left an *even* number of loops. 

What Peter finally proved was that, no matter what set of tiles 

you use (i.e., let each square be any tile, even if you repeat 

some tile patterns multiple times and not use others at all), 

the parity of the number of loops is equal to the parity of the 

number of 1’s in the tiles’ labels. Donna Dietz, who was also at 

the MOVES conference, wrote up Peter’s proof, along with other 

observations the three of us made, in a paper posted on the 

ArXiv: https://arxiv.org/abs/1908.05718 .  She also posted a 
playable version of the puzzle on her website, as noted in 

Figure 4. (Clicking on any two squares there interchanges them, 

so you can move pieces wherever you want.)

Peter’s proof works for any even-by-even array of my tile 

patterns; it doesn’t work if one of the dimensions is odd.

Jim Propp, another MOVES attendee, had an interesting suggestion 

at the meeting: Instead of toroidal connections, whenever an arc 

came to the outer edge of the 4x4 square array, connect it to 

the arc in the nearest neighboring square, with three-quarter-

circle connections at the four corners. For the initial “binary” 

array, you get this:
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Figure 7: Jim Propp’s non-toroidal suggestion for the looping 

puzzle problem.

When Jim showed me this, I suggested connecting adjacent 

thridpoints *within* each edge around the perimeter instead:

	 	 	
Figure 8: My alternative to Jim Propp’s non-toroidal suggestion 

for the looping puzzle problem.
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To our considerable surprise, this *does* consist of one single 

loop!  It’s still unclear, to me at least, if there’s anything 
behind this beyond mere happenstance.

Later, in some email correspondence, when he saw the over- and 

under-passing version of the looping puzzle, Jim complained that 

the 16 tiles were no longer a complete set of possible patterns: 

There should really be a separate tile for each assignment of 

which arc goes under the other when two arcs cross. This would 

lead to a 9x9 puzzle with a total of 81 different tiles. That’s 

a bit big for my taste, but I urge anyone undaunted by the size 

to see if there’s anything of interest it.

In response to Jim’s complaint, I designed a 4x4 “Toroidal 

Trellis” problem:

1010 1001

1110

1100

1101

1111 0000

0011

0110

0101

01111011

1000 00100100 0001

    

Figure 9: A 4x4 “Trellis” puzzle, with squares in a “Sol LeWitt” 

arrangement, shown with labels and guidelines (left) and as pure 

trellis (right).
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The idea is to think of each tile as containing four thin slats 

of wood, running diagonally by quarter turns, with one slat 

lying over the other where they meet at the tile’s edge. The 

binary numbers indicate whether the slat “entering” an edge (in 

a clockwise direction) lies over or under the slat “exiting" the 

edge, starting at the tile’s topmost edge. One can now picture 

the pattern as a trellis, by joining the “upper slats” that meet 

from the two sides of each edge and likewise for the “lower” 

slats. Since there are 64 slats altogether, one can again ask if 

there’s an arrangement of the tiles so that the trellis, again 

with toroidal connections at the outer edges of the 4x4 array, 

consists of a single loop.  I again don’t know the answer.

Alternative to toroidal identifications, one can imagine the 

pattern in a 4x4 arrangement as a ribbon that reflects with a 

crease when it hits an outer edge of the array. Amazingly, the 

“Sol LeWitt” arrangement in Figure 9 above *is* a single loop! 

So are the 4x4 “binary” arrangement and a “magic square” 

arrangement:

10101001

11101100 1101 1111

0000 0011

01100101 0111

10111000

0010

0100

0001

    

1010

10011110

1100

1101

1111

0000

0011

0110

0101

0111 1011

1000

0010

0100

0001
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Figure 10: The Trellis puzzle in its “binary" arrangement (left) 

and a “magic square arrangement (right).  Viewed as (non-
toroidal) ribbons creased at the outer edges of the array, each 

is an example of a single loop.

Certainly not *every* arrangement of the nontoroidal “ribbon” 

trellis consists of a single loop, since it’s easy to arrange 

the tiles so as to produce short loops of length 4.  But I 
suspect that a large number of arrangements do give a single 

loop.  My only evidence of this, however, is the fact that the 
first time I tried a “random” arrangement, it turned out to be 

single-looped. Since there are 16! = 20,922,789,888,000 
different non-toroidal ways to lay out the 16 tiles, I’d be 

surprised indeed if I just got lucky. It might be worth 

someone’s time counting the exact number of single-loop 

arrangements. (It might be worthwhile doing the same for Jim 

Propp's and/or my non-toroidal versions of the looping puzzle 

problem.)

More recently, in 2021, I got to wondering if I could reduce the 

size of the looping puzzle from 4x4 to 3x3. That is, could I 

come up with a set of *nine* patterns that exhaust all the 

possibilities for some design criterion? (It also occurred to me 

to see if I could reduce things yet further to a 2x2 version of 

a puzzle. The ultimate, of course, would be to come up with a 

challenging 1x1 puzzle!) The problem is that 9 doesn’t easily 

relate to 4. But what finally occurred to me is that among the 

24 permutations of four objects, exactly 9 are *derangements*, 

i.e., permutations that have no fixed elements. So this 

suggested two pairs of possibilities:
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1a 1b

2a

2b

3b 3a

4b

4a

 

1a 3b

2a

4b

1b 3a

2b

4a

	

1a 1b 2a

2b

3b 3a

4b

4a
 

1a 3b 2a

4b

1b 3a

2b

4a

Figure 11: Two labellings of the thridpoints of a square (left) 

and two labellings of the corners and midpoints (right) that 

lend themselves to a “deranged” looping puzzle. The idea is to 

connect each “a” point to a “b” point with a *different* number.

The “thridpoint” and corner-midpoint labellings in Figure 11 

produce these two sets of 9 different tiles:

4123

2341

4321

2143 2413

4312

3142 3412 3421

    4123

2143

3421

4312

3142

2341

4321

2413

3412

Figure 12: Two toroidal “derangement" puzzles based on 

connecting thridpoints as labeled in Figure 11 (left). Can 

either of these be rearranged so as to have a single toroidal 

loop?
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4123

2341

4321

2143 2413

4312

3142 3412 3421

    4123

2341

4321

2143 2413

4312

3142 3412 3421

Figure 13: Two toroidal “derangement" puzzles based on 

connecting corners to midpoints as labeled in Figure 11 (right). 

Can either of these be rearranged into a single toroidal loop? 

(Note, the convention at corners is to continue from one square 

into the diagonally adjacent square.)

These final four puzzles are small enough that a brute-force 

(computer) search could easily resolve them: There are, after 

all, only 8! = 40,320 toroidally different arrangements. (The 

4x4 puzzles have 15! = 1,307,674,368,000 toroidally different 
arrangements, which is big enough to call for some clever 

pruning.) I myself have not spent any time, either brute-force 

or cleverly, looking systematically for arrangements that give a 

single loop, but I have noticed that for two of the puzzles, 

randomly rearranging the squares often produces a single-loop 

solution, whereas for the other two I’ve yet to find a single-

loop arrangement. I leave it to the reader to guess (and then 

check) which two are which — and, ideally, to figure out why.

PUZZLES | 211

Puzzle Fonts About Puzzles

Erik D. Demaine∗ Martin L. Demaine∗

Abstract

We present five recent puzzle fonts — where reading glyphs in the font require solving
a puzzle — that illustrate five different puzzles/puzzle games, each with a corresponding
mathematical result. Each font is an open-source interactive web application that lets the user
write messages in the font, and then solve the resulting puzzles (or send them to a friend to
solve), revealing the message.

1 Introduction

We have been developing a growing series of mathematical and puzzle fonts — which recently
reached 30 different typefaces1 — that you can interact with in web apps.2 Every one of these fonts
is mathematical in the sense that it illustrates a mathematical theorem or open problem. Most
of our typefaces also offer one or more puzzle fonts, where reading the text requires solving a
mathematical puzzle. These fonts were recently featured in The New York Times [Rob21].

In this paper, we describe five recent typefaces that share the theme of both having puzzle fonts
and being about puzzles. Figure 1 gives a visual overview. The first typeface is about a puzzle
video game, Tetris, while the other four typefaces are about pencil-and-paper puzzles: Sudoku,
Yin-Yang, Path Puzzles, and Tatamibari.

The presentation corresponding to this paper is available on YouTube.3 All fonts presented
here, including the slides and code that generates all shown figures, are free and open source, with
code available on GitHub.4

3 2 6 7 9 4 1 5 8

7 1 4 8 5 6 2 3 9

9 5 8 1 2 3 4 6 7

6 3 9 2 8 7 5 1 4

4 7 5 3 1 9 6 8 2

2 8 1 4 6 5 7 9 3

1 9 7 5 3 2 8 4 6

5 4 3 6 7 8 9 2 1

8 6 2 9 4 1 3 7 5

6 6

2

2

2

Figure 1: FONTS written in the five puzzle typefaces described here: Tetris (Section 2), Sudoku (Section 3),
Yin-Yang (Section 4), Path Puzzles (Section 5), and Tatamibari (Section 6).

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St.,
Cambridge, MA 02139, USA, {edemaine,mdemaine}@mit.edu

1A typeface is a collection of multiple related fonts.
2https://erikdemaine.org/fonts/
3https://youtu.be/K6M3ELHr5Ls
4https://github.com/edemaine/talk-puzzle-fonts-about-puzzles/

1
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Figure 2: TETRIS FONT written in the Tetris solved font.

2 Tetris

The Tetris typeface5 represents each letter by a stacking of a complete set of oriented tetrominoes,
that is, one of each of the possible pieces in the Tetris video game. Figure 3 shows the stackings
for the entire alphabet. Each stacking is designed to be executable in Tetris physics, with pieces
stacked in order and stopping when they hit a previously placed piece. Figure 4 shows how the
pieces can be ordered so that their falling in sequence produces the letters in Figure 3. The web
app offers an animated font that simulates Tetris gameplay.

Displaying all the pieces splayed out in fall order, as in Figure 4, is one way to make puzzles
with a Tetris puzzle font. For example, can you read the secret messages in Figures 5 and 6?

Another way to make puzzles with the Tetris font is to hide the individual pieces, and ask
the viewer to figure out how the Tetris pieces exactly tile the letter-shaped regions. These pack-
ing/tiling problems can be quite challenging; when developing the font, we made extensive use
of the BurrTools software6 which can solve such puzzles by brute force.

We presented this font in a paper that proved a new mathematical result about Tetris: the
perfect-information game is NP-complete even with just 8 columns or 4 rows [ACD+20].

Figure 3: The entire alphabet in the Tetris solved font.

5https://erikdemaine.org/fonts/tetris/
6http://burrtools.sourceforge.net/
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Figure 4: The entire alphabet in the Tetris falling-puzzle font.

3
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Figure 5: What message do you get if each piece falls straight down until it hits one of the other pieces (or
the floor)? The solution is in Figure 25.

Figure 6: What message do you get if each piece falls straight down until it hits one of the other pieces (or
the floor)? The solution is in Figure 26.

4
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Figure 7: Can you tile each letter with exactly the pieces on the left? Solutions are in Figure 27.

Figure 8: Can you tile each letter with exactly the pieces on the left? Solutions are in Figure 28.

3 Sudoku

The Sudoku typeface7 draws a letter of the alphabet in a Sudoku puzzle, by connecting consecutive
numbers in the solution (connecting all 1s to 2s, all 2s to 3s, etc.), and drawing the longest path
among these connections. Figure 9 shows examples of puzzles and their solutions, and Figure 10
shows the full alphabet. We designed the intended paths by hand, and used our own brute-force
computer search to find 81 = 9 · 9 compatible solutions. Then we reduced each solution to a
corresponding minimal puzzle that can be uniquely solved by a human (without lookahead) by
randomly removing locally derivable clues.

9 4 2

5 9 3 6

7 2 6

3 6

9 7 5 8

7 5

3 5 4

4 6 8

7 8 2 4

8 5

4 3 7

7

6 3 5 8

2 4 1

3 5 2

2 1 7

5 6 1

4 9 5

6

9 7 1 3

7 4

8 5 9

2 1 9 3

3 7 8

9 5 3

1 2 5 9

4

7 3 9

9 2 3 7

7 5 8

2 1 6

4 6

3 8

1 8 5

5 6 9 3

5 6 7 9

3 8 1

7 9 1 2

5 8

4 1 2 5

6 3 2 1

1 6 5 4

9 8

8 3 9

8

7 6 1

5 7

4 7 3 8

2 1 9

3 6 7 9 5

4 1 5

2 7 3

3 1 6 8 9 7 4 2 5

8 5 9 4 3 2 1 6 7

7 4 2 5 1 6 3 8 9

5 2 3 6 7 8 9 1 4

6 9 7 1 5 4 8 3 2

1 8 4 9 2 3 7 5 6

2 7 8 3 4 5 6 9 1

9 3 5 7 6 1 2 4 8

4 6 1 2 8 9 5 7 3

7 5 8 3 6 2 1 9 4

6 3 1 9 7 4 8 2 5

4 9 2 8 1 5 3 7 6

1 8 3 5 9 6 2 4 7

2 6 4 1 3 7 5 8 9

9 7 5 2 4 8 6 3 1

3 1 6 7 8 9 4 5 2

8 2 9 4 5 1 7 6 3

5 4 7 6 2 3 9 1 8

6 3 4 8 7 1 2 9 5

7 5 1 2 3 9 6 4 8

9 8 2 6 4 5 7 1 3

5 9 3 1 2 6 8 7 4

4 6 8 3 5 7 1 2 9

2 1 7 4 9 8 5 3 6

3 4 6 7 8 2 9 5 1

8 7 9 5 1 4 3 6 2

1 2 5 9 6 3 4 8 7

1 4 6 7 5 9 2 3 8

7 2 3 8 4 6 1 5 9

8 5 9 1 2 3 4 6 7

6 3 4 2 9 7 5 8 1

2 7 5 3 8 1 6 9 4

9 8 1 4 6 5 7 2 3

4 9 7 5 3 2 8 1 6

3 1 2 6 7 8 9 4 5

5 6 8 9 1 4 3 7 2

4 5 2 8 6 7 9 1 3

3 8 6 5 9 1 4 2 7

1 9 7 4 3 2 6 5 8

6 3 8 7 5 9 1 4 2

2 1 5 6 4 8 3 7 9

9 7 4 1 2 3 8 6 5

5 6 3 2 8 4 7 9 1

8 2 1 9 7 6 5 3 4

7 4 9 3 1 5 2 8 6

4 5 8 6 7 1 3 2 9

9 3 1 8 2 4 6 5 7

7 6 2 9 3 5 8 1 4

1 8 3 5 9 6 4 7 2

6 9 4 2 1 7 5 3 8

2 7 5 3 4 8 1 9 6

3 1 6 7 8 9 2 4 5

8 4 9 1 5 2 7 6 3

5 2 7 4 6 3 9 8 1

Figure 9: SUDOKU written in one of the 81 Sudoku puzzle fonts (top) and the corresponding solved font
(bottom). The bottom figure highlights connections between consecutive numbers, with thick lines denoting
the longest path of such connections.

7https://erikdemaine.org/fonts/sudoku/
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9 3 4

6 5 8 4

6 3

3 9 7 4 6

7

9 5 2 8

3 1 7

6 9

2 1

8 5

3 9

5 9 6

2 7 1

4 2

5 7 8 6 4

8

9 4 3 2 7 8

7 5 9

3 6 8

3 9

4 8 5 7

5

8 2 7 3

5 9

2 1 8 9 3

6 7 4

2 9

3 5

8 4 5 3

1 2

6 8 4

1 4 9

8 3

7 8 6

5 9 4 7

3 8

1 4 2

5

6

1 4 2 8

6 2

9 6

7 3 5

8 2 4 7 1

9

2 1 3 8 6

5 4 8

2

6 3 1 5

7 8 2 6 5

6 7

4 2 7

9 3

8 9

3 5 6 8 4

3 9 2 5

2 1 4 6 9

4 7

7 6 2

7 5 9

2

7 3 4

1

3 4 7 8

1 8

7 5 8

3 5 9 4 2

4 6 3

3 5 9

1 2 7

6 2 4 5

7

1 2 3

7 3 8 2

2 4 7 6 3

4

3 7 8

1 6

4 9 2 3 6

5 4 6

2

7 8 4 5

8 6 1 9

3 9 7 4

3 2

9 8 1

5 2

5 6

5 2 8 9 1

8 6 5

3 2

2 1 5 9 3

6 9

4 1 5

5

1 6

9 1 2

6 9 7

5

3 1 6

1

3 6 2 9

5 9 6 7 3

7 2 8

8 4

4 8 1 5 7

2 3

4 2

2 3 8

1 2 4 7

5 1

6 7 3

8 1 9 4

6 4 3

9 5 2

3 8 6 4 9

8 9 4

1 5 7

3 6 5

9 6 3 2

7 5 1

1 8 2

3 2 4

1 6 5 4

3 9 1

8 2 4

8 5

7 5 3 9

6 1 2

9 4

4 3 6

1

7 6

3 2 8

5 6 9 2

2 5 3 4 9

4 5

3 9 8 7

9 8 5

9

4 3

9 6 8

5 9 2

7 4

4 8 1 7

3 7 1

8 4 9

8 5 2 6

2 9

5 8 2 3

2 5

9

9 3 4

1 6 5

9 7

2 4 3 7

1 5 9

8 1

8 4 2

7 3 2 5

9 1 7

5 1 3

2 9 8 1

9 6 4

5

8 6 9

6 4

1 3 7 5

9 4 6 3 8

2

8 3

7 2

2 1

8 9

3 9 6 4

6 7 8

6

1 2

9 3 1

6 9 2

6 4 7 8

3 2 8

8 1 5

5 7

4 1 7 6

9 8 4 6

4 2 5 1 9

5

4 7 9 5

2 6

2 1 4

1 7 8 9

7

8

5

8 4 5

3 1 8 7

3 2 1

1 2

6 7

9 1 6 5

7 9 6

6 7 8 9

2 1

6 3

9 2 8 7

6 9 2

3 5 4 8

8 7

1 5

4 5 7 3

5 6 3

4 9 5

8 6

7 2 1

3 1 4 7

9 8 3

4 3 1 5

8 5

3 7 2

4 1 8

2 5 1 4 8

4 3

1 2 3

1 9

9 7 3 6 5

8 9 2

2 7 6

4 5 7

2 1 7 5 9 3 6 4 8

6 5 3 1 8 4 9 7 2

4 9 8 7 6 2 1 5 3

3 8 2 9 5 7 4 1 6

1 7 6 3 4 8 2 9 5

9 4 5 2 1 6 8 3 7

5 3 1 8 2 9 7 6 4

7 2 4 6 3 1 5 8 9

8 6 9 4 7 5 3 2 1

8 6 2 3 4 1 9 5 7

3 9 7 2 6 5 4 8 1

4 1 5 9 8 7 6 2 3

9 2 6 8 5 3 7 1 4

1 4 3 7 2 9 8 6 5

5 7 8 6 1 4 3 9 2

7 3 1 5 9 8 2 4 6

6 5 9 4 3 2 1 7 8

2 8 4 1 7 6 5 3 9

7 5 2 4 1 3 6 8 9

3 1 9 8 7 6 4 5 2

6 4 8 5 9 2 7 1 3

1 2 7 9 3 4 8 6 5

9 8 6 2 5 7 3 4 1

4 3 5 1 6 8 2 9 7

8 9 4 3 2 1 5 7 6

2 7 1 6 8 5 9 3 4

5 6 3 7 4 9 1 2 8

3 5 4 6 7 1 2 8 9

6 8 1 2 3 9 7 5 4

9 7 2 8 4 5 3 6 1

5 9 3 1 2 6 4 7 8

2 6 8 4 5 7 9 1 3

1 4 7 3 9 8 6 2 5

4 1 6 7 8 3 5 9 2

7 2 9 5 1 4 8 3 6

8 3 5 9 6 2 1 4 7

6 9 2 4 5 3 1 8 7

3 7 8 9 1 6 5 4 2

4 5 1 2 8 7 3 6 9

5 2 4 6 9 8 7 1 3

1 3 9 7 4 5 6 2 8

7 8 6 1 3 2 4 9 5

9 4 5 8 7 1 2 3 6

2 1 7 3 6 9 8 5 4

8 6 3 5 2 4 9 7 1

1 3 8 5 2 6 9 7 4

2 7 9 1 4 3 5 8 6

5 4 6 7 8 9 1 2 3

3 2 5 9 1 4 7 6 8

6 9 4 3 7 8 2 1 5

7 8 1 2 6 5 4 3 9

9 5 2 6 3 7 8 4 1

4 1 3 8 5 2 6 9 7

8 6 7 4 9 1 3 5 2

8 2 1 5 4 9 3 7 6

7 6 4 3 2 1 8 9 5

9 3 5 7 6 8 1 4 2

3 9 6 2 8 7 5 1 4

2 5 7 1 3 4 6 8 9

4 1 8 6 9 5 7 2 3

5 4 9 8 7 6 2 3 1

1 7 2 4 5 3 9 6 8

6 8 3 9 1 2 4 5 7

6 7 2 9 8 1 3 4 5

8 9 4 3 7 5 6 1 2

1 3 5 2 6 4 7 9 8

9 4 6 1 2 3 8 5 7

2 1 7 5 4 8 9 3 6

3 5 8 6 9 7 4 2 1

4 2 9 7 1 6 5 8 3

7 8 3 4 5 2 1 6 9

5 6 1 8 3 9 2 7 4

6 7 2 4 5 9 1 8 3

4 3 9 8 6 1 2 7 5

5 8 1 2 7 3 4 6 9

7 9 6 3 8 4 5 2 1

2 1 4 7 9 5 6 3 8

3 5 8 1 2 6 7 9 4

9 6 3 5 4 7 8 1 2

1 2 5 6 3 8 9 4 7

8 4 7 9 1 2 3 5 6

1 3 2 8 5 9 4 7 6

9 4 5 7 6 2 8 1 3

7 8 6 1 3 4 9 2 5

4 7 8 6 2 5 1 3 9

2 5 3 9 7 1 6 4 8

6 9 1 4 8 3 2 5 7

3 2 4 5 9 8 7 6 1

8 1 7 3 4 6 5 9 2

5 6 9 2 1 7 3 8 4

4 5 2 8 9 6 3 7 1

3 8 6 5 7 1 9 4 2

1 9 7 4 3 2 8 5 6

2 1 8 7 5 9 4 6 3

7 3 5 6 4 8 2 1 9

9 6 4 1 2 3 5 8 7

8 7 3 2 6 4 1 9 5

5 2 1 9 8 7 6 3 4

6 4 9 3 1 5 7 2 8

5 6 9 8 1 7 3 4 2

2 4 7 9 5 3 1 6 8

3 8 1 2 4 6 9 5 7

6 9 2 3 7 8 4 1 5

7 5 3 4 6 1 2 8 9

8 1 4 5 9 2 6 7 3

9 7 5 6 2 4 8 3 1

1 3 6 7 8 9 5 2 4

4 2 8 1 3 5 7 9 6

2 3 7 4 5 8 6 9 1

4 6 8 7 1 9 5 2 3

9 5 1 2 3 6 7 8 4

1 8 2 6 4 5 3 7 9

5 7 3 1 9 2 4 6 8

6 9 4 8 7 3 1 5 2

8 2 5 3 6 1 9 4 7

7 1 6 9 2 4 8 3 5

3 4 9 5 8 7 2 1 6

2 3 7 5 8 6 4 9 1

8 5 9 4 7 1 3 2 6

4 6 1 2 3 9 5 8 7

9 7 2 8 4 3 6 1 5

6 8 3 1 5 2 7 4 9

5 1 4 9 6 7 8 3 2

7 2 5 3 1 8 9 6 4

1 4 8 6 9 5 2 7 3

3 9 6 7 2 4 1 5 8

1 2 6 7 5 4 3 9 8

7 4 3 8 9 6 1 5 2

9 5 8 1 2 3 4 7 6

8 9 4 2 6 7 5 3 1

2 7 5 3 1 9 6 8 4

3 6 1 4 8 5 7 2 9

6 1 9 5 3 2 8 4 7

4 3 2 6 7 8 9 1 5

5 8 7 9 4 1 2 6 3

7 2 8 4 1 5 9 3 6

1 4 9 3 2 6 7 5 8

5 3 6 7 8 9 1 4 2

2 7 5 1 3 8 4 6 9

8 9 4 5 6 7 3 2 1

6 1 3 9 4 2 8 7 5

9 8 2 6 7 3 5 1 4

3 6 1 8 5 4 2 9 7

4 5 7 2 9 1 6 8 3

9 6 7 1 4 5 3 2 8

4 8 5 9 3 2 1 6 7

3 1 2 6 7 8 9 4 5

7 4 1 5 2 6 8 9 3

6 3 9 4 8 1 7 5 2

2 5 8 3 9 7 6 1 4

8 7 6 2 1 4 5 3 9

1 9 4 8 5 3 2 7 6

5 2 3 7 6 9 4 8 1

5 8 4 2 6 7 1 3 9

3 9 2 1 4 5 6 7 8

1 6 7 8 9 3 5 2 4

7 5 9 3 8 4 2 1 6

2 4 1 6 7 9 3 8 5

6 3 8 5 1 2 9 4 7

9 2 6 4 3 8 7 5 1

4 1 5 7 2 6 8 9 3

8 7 3 9 5 1 4 6 2

1 5 3 8 9 7 4 2 6

6 7 8 4 3 2 1 5 9

4 2 9 5 1 6 3 8 7

5 4 1 6 7 8 9 3 2

7 3 2 9 5 4 8 6 1

8 9 6 1 2 3 7 4 5

2 1 7 3 4 5 6 9 8

3 8 5 7 6 9 2 1 4

9 6 4 2 8 1 5 7 3

1 3 2 7 4 9 5 6 8

9 4 5 6 3 8 1 2 7

7 6 8 5 1 2 3 4 9

8 7 6 9 2 3 4 5 1

3 5 1 8 6 4 9 7 2

4 2 9 1 7 5 8 3 6

2 1 4 3 8 6 7 9 5

5 8 3 2 9 7 6 1 4

6 9 7 4 5 1 2 8 3

6 5 9 8 1 2 3 4 7

8 3 1 6 7 4 2 9 5

7 4 2 9 3 5 8 1 6

1 8 3 5 4 6 9 7 2

2 6 4 1 9 7 5 3 8

9 7 5 3 2 8 4 6 1

3 2 6 7 8 9 1 5 4

5 9 8 4 6 1 7 2 3

4 1 7 2 5 3 6 8 9

9 8 1 3 7 4 5 6 2

6 4 2 5 1 9 7 8 3

7 5 3 6 2 8 9 1 4

4 6 7 9 3 1 2 5 8

5 1 8 2 4 6 3 7 9

2 3 9 8 5 7 1 4 6

1 2 4 7 6 3 8 9 5

3 9 6 1 8 5 4 2 7

8 7 5 4 9 2 6 3 1

4 7 9 3 5 8 6 1 2

2 8 6 4 1 7 5 3 9

3 1 5 9 6 2 8 4 7

8 9 4 6 7 3 2 5 1

7 5 3 1 2 9 4 6 8

1 6 2 8 4 5 9 7 3

9 4 1 2 3 6 7 8 5

5 3 8 7 9 4 1 2 6

6 2 7 5 8 1 3 9 4

4 2 7 3 6 5 1 8 9

9 5 8 1 4 7 6 2 3

6 1 3 9 2 8 5 7 4

1 6 5 7 8 9 4 3 2

3 7 2 6 5 4 9 1 8

8 4 9 2 1 3 7 5 6

7 3 1 4 9 2 8 6 5

2 8 4 5 7 6 3 9 1

5 9 6 8 3 1 2 4 7

4 1 6 2 3 9 7 5 8

3 8 5 7 1 6 4 2 9

7 9 2 8 4 5 3 6 1

6 5 3 9 8 1 2 4 7

9 4 1 5 7 2 8 3 6

2 7 8 4 6 3 9 1 5

8 6 9 3 5 4 1 7 2

1 3 7 6 2 8 5 9 4

5 2 4 1 9 7 6 8 3

2 3 5 1 9 7 4 6 8

9 7 4 6 5 8 1 2 3

8 6 1 2 3 4 7 5 9

7 1 3 4 6 5 9 8 2

4 9 2 8 7 3 6 1 5

6 5 8 9 2 1 3 4 7

3 2 7 5 1 6 8 9 4

5 4 6 7 8 9 2 3 1

1 8 9 3 4 2 5 7 6

Figure 10: The entire alphabet written in one of the 81 Sudoku puzzle fonts (top) and the corresponding
solved font (bottom).

The 81 Sudoku puzzle fonts let us hide messages in Sudoku puzzles. Figures 11 and 12 give
two puzzles for you two try. Alternatively, try solving some puzzles on the interactive web app.

Sudoku also has a corresponding complexity result: it is NP-complete and, even stronger,
ASP-complete [YS03]. In fact, finding the longest path among a square grid of connections is also
NP-complete [IPS82].
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6 2 1 9

4 7

9 7 4

6 4 9

5 3 6

5 1

3 9

2 6 8 5 3

1 2

9 1 5

3 2 7 6 9

6 8

2 9 7

4 5 2

3 2

8 2 4 7

5 1

Figure 11: Can you solve the Sudoku puzzles, connect consecutive numbers, and find the longest paths, to
reveal the hidden message? Or solve interactively on the web. The solution is in Figure 29.

5 8

8 1 5

9 7 1 6

6 2 8 4 5

9

4 6 7

5 4 2 1

1 7

7 2 8

1 7 6

3 9 1

4 7 1

8 5 4 6 2

5

2 1 6 3

2 9 8

2 3

8 5 9

8 5 2

3 8

6 7 1

5 2 8 9

4 7 1

6 9 2 7 4

5 7

9 5 6

9

6 8 9

4 2

8 3 5 7

7 8 3 6

9 5 4

9 7

6 2

7 4 5

6 1 3

1 9 4

4 3 9

6 7

1 6 8

2 3

9 5 1 3 4 6

3 5

5 6

7 8 5 9

Figure 12: Can you solve the Sudoku puzzles, connect consecutive numbers, and find the longest paths, to
reveal the hidden message? Or solve interactively on the web. The solution is in Figure 30.
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Figure 13: YIN YANG written in the Yin-Yang puzzle font (left) and solved font (right).

4 Yin-Yang

The Yin-Yang typeface8 represents each letter of the alphabet by another type of pencil-and-paper
puzzle called Yin-Yang. The puzzle is on a square grid, with some of the squares prefilled with a
black or white circle. The goal is to fill in the remaining squares with black and white circles so
that (1) the black circles are connected by horizontal and vertical connections, (2) the white circles
are similarly connected, and (3) there are no 2 × 2 squares with circles of the same color. Figure 13
shows examples of puzzles and their solutions, and Figure 15 shows the full alphabet. In each
case, the black circles outline the letter.

We designed the solutions by hand, then used our own brute-force computer search to re-
peatedly remove clues that preserved unique solvability, resulting in a minimal puzzle with the
intended solution. After hundreds of such trials, we hand-picked what seemed to be the most
challenging puzzle for each letter. Nonetheless, some letters (such as V) are relatively difficult,
while others (such as E, J, and M) are relatively easy.

As usual, the puzzle font lets us hide messages in the puzzle. Figures 14 and 16 give two such
messages for you to try. The font is also designed to make it possible to combine multiple letters
into a single puzzle (while still satisfying the constraints), though the resulting minimal puzzles
seem to be substantially easier to solve. Figure 17 shows an example.

Along with this font, we proved that Yin-Yang puzzles are NP-complete [DLRU21].

Figure 14: Can you connect together the black and white dots without a monochromatic 2 × 2 square? Or
solve interactively on the web. The solution is in Figure 31.

8https://erikdemaine.org/fonts/yinyang/

8
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Figure 15: The entire alphabet written in the Yin-Yang puzzle font (top) and solved font (bottom).

9
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Figure 16: Can you connect together the black and white dots without a monochromatic 2 × 2 square? Or
solve interactively on the web. The solution is in Figure 32.

Figure 17: Can you connect together the black and white dots without a monochromatic 2 × 2 square?
Or solve interactively on the web: https://erikdemaine.org/fonts/yinyang/g4g.html. The solution is in
Figure 33.

10
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Figure 18: PATH PUZZ written in the path-puzzles puzzle font (left) and solved font (right).

5 Path Puzzles

The path-puzzles typeface9 represents each letter of the alphabet by another type of pencil-and-
paper puzzle called path puzzles. The puzzle is on a square grid with two gaps on the boundary,
where some rows and some columns are marked with an integer. The goal is to draw a single path
between the two gaps such that the number of filled squares in each row and column matches the
marked integer (if given). Figure 18 shows examples of puzzles and their solutions, and Figure 20
shows the full alphabet. In each case, the path draws the letter.

These puzzles were designed by hand to have unique solutions, and verified to have unique
solutions by our own brute-force computer search, in a larger team. We presented this font in a
paper that proved NP-completeness of path puzzles [BDD+20].

Figure 19: Can you draw a path between the two boundary gaps that has the specified numbers of filled
squares in indicated rows and columns? Or solve interactively on the web. The solution is in Figure 34.

9https://erikdemaine.org/fonts/pathpuzzles/

11
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Figure 20: The entire alphabet written in the path-puzzles puzzle font (top) and solved font (bottom).
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Figure 21: TATAMIBARI written in the Tatamibari puzzle font (top) and solved font (bottom).

6 Tatamibari

The Tatamibari typeface10 represents each letter of the alphabet by a final type of pencil-and-paper
puzzle called Tatamibari puzzles, published by the famous Japanese puzzle publisher Nikoli. The
puzzle is on a square grid, with some cells marked with a clue in the shape of a plus sign, horizontal
bar, or vertical bar. The goal is to decompose the grid into exactly one rectangle per clue such
that (1) each plus clue is in a square; (2) each horizontal clue is in a nonsquare rectangle that is
wider (more horizontal) than it is tall; and (3) each vertical clue is in a nonsquare rectangle that is
taller (more vertical) than it is wide. Figure 21 shows examples of puzzles and their solutions, and
Figure 22 shows the full alphabet. In each case, coloring the rectangles the same as the (black and
white) clues reveals the letter in black.

These puzzles were designed by hand to have unique solutions, while extensively aided by
our own brute-force computer search to verify solvability and uniqueness, in a larger team. We
presented this font in a paper that proved NP-completeness of Tatamibari puzzles [ABD+20].

10https://erikdemaine.org/fonts/tatamibari/

13
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Figure 22: The entire alphabet written in the Tatamibari puzzle font (top) and solved font (bottom).

14

Figure 23: Can you draw one rectangle per clue so that plus clues are in squares, horizontal clues are in
wider-than-square rectangles, and vertical clues are in taller-than-square rectangles? Or solve interactively
on the web. The solution is in Figure 35.

Figure 24: Can you draw one rectangle per clue so that plus clues are in squares, horizontal clues are in
wider-than-square rectangles, and vertical clues are in taller-than-square rectangles? Or solve interactively
on the web. The solution is in Figure 36.
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A Puzzle Solutions

Figure 25: The self-referential message hidden in Figure 5.

Figure 26: The message hidden in Figure 6.

Figure 27: Tilings for the PACKING letter shapes in Figure 7.
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Figure 28: Tilings for the TETROMINOES letter shapes in Figure 8.

6 2 7 8 1 4 3 9 5

3 4 8 7 5 9 1 2 6

9 5 1 2 3 6 7 8 4

1 8 2 6 4 5 9 7 3

5 9 3 1 7 2 4 6 8

7 6 4 9 8 3 2 5 1

8 7 5 3 2 1 6 4 9

2 1 6 4 9 8 5 3 7

4 3 9 5 6 7 8 1 2

7 8 1 5 6 9 2 3 4

9 6 4 3 2 1 5 8 7

3 2 5 7 4 8 6 9 1

5 3 6 2 8 7 1 4 9

2 9 7 1 3 4 8 6 5

1 4 8 6 9 5 7 2 3

4 1 9 8 7 6 3 5 2

8 5 2 4 1 3 9 7 6

6 7 3 9 5 2 4 1 8

Figure 29: Solved Sudoku puzzles from Figure 11, in honor of Martin Gardner.

7 2 1 5 6 9 3 8 4

6 8 4 3 2 1 5 9 7

3 9 5 7 4 8 1 2 6

9 3 6 2 8 7 4 5 1

2 5 7 1 3 4 8 6 9

4 1 8 6 9 5 7 3 2

5 4 9 8 7 6 2 1 3

8 6 3 4 1 2 9 7 5

1 7 2 9 5 3 6 4 8

3 1 7 5 9 2 8 4 6

5 6 2 4 8 3 7 9 1

4 9 8 7 6 1 2 3 5

1 8 3 9 5 7 4 6 2

2 7 6 3 4 8 1 5 9

9 4 5 2 1 6 3 7 8

7 3 1 6 2 9 5 8 4

6 2 4 8 3 5 9 1 7

8 5 9 1 7 4 6 2 3

1 8 4 7 5 6 9 2 3

2 9 5 3 4 1 7 6 8

3 6 7 8 9 2 5 4 1

7 5 1 2 8 4 6 3 9

9 4 2 6 7 3 8 1 5

6 3 8 5 1 9 2 7 4

5 2 6 4 3 8 1 9 7

8 1 3 9 2 7 4 5 6

4 7 9 1 6 5 3 8 2

3 2 7 5 1 6 4 8 9

9 5 6 7 8 4 1 3 2

4 8 1 2 3 9 5 7 6

1 7 2 8 4 3 6 9 5

8 6 3 9 5 2 7 1 4

5 9 4 1 6 7 8 2 3

6 1 5 3 2 8 9 4 7

7 3 8 4 9 5 2 6 1

2 4 9 6 7 1 3 5 8

3 5 1 7 8 9 4 6 2

6 7 8 4 3 2 1 5 9

9 4 2 5 1 6 3 7 8

4 1 3 6 7 8 9 2 5

2 6 7 9 5 4 8 3 1

8 9 5 1 2 3 7 4 6

1 2 9 3 4 5 6 8 7

5 3 6 8 9 7 2 1 4

7 8 4 2 6 1 5 9 3

Figure 30: Solved Sudoku puzzles from Figure 12, in honor of Howard Garns who invented Sudoku puzzles
(under the name “Number Place”), first published in May 1979.

Figure 31: Solved Yin-Yang puzzles from Figure 14, revealing the self-referential message DOTS.
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Figure 32: Solved Yin-Yang puzzles from Figure 16, revealing the self-referential message BLACK/WHITE.

Figure 33: Solved Yin-Yang puzzle from Figure 14, in honor of Martin Gardner.

18
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Figure 34: Solved path puzzles from Figure 19, revealing the self-referential message MEANDER.

Figure 35: Solved Tatamibari puzzles from Figure 23, revealing the message ORTHO (referring to the
orthogonal nature of rectangles).

Figure 36: Solved Tatamibari puzzles from Figure 24, revealing the message NP HARD.
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Multiplication by Superposition 
By Doug Engel 

Littleton, CO USA 

March-11-2022 

 

Multiplying polygons by superposition, Mps 
For G4G14 this is an idea that can be used to devise various puzzles.  The idea is to overlap two 

geometric figures and count the number of pieces produced if all lines are cut thru.    The 

simplest case is two equal circles.  We can overlap them in three different ways to get a^2’ = 1, 

2 and 3 pieces as shown in Fig 1.  Call this multiplication Mps.  These counts are the complete 

solution for this Mps.  The primed expression, c^2’, indicates Mps here. 

 

 

 

Figure 2 shows  Mps solutions for 2 equal triangles a with a^2’ having 7 solutions, 1 thru 7 pieces.   
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Continuing the sequence with a square we get 9 Mps solutions in Figure 3, and 11 solutions with a 

pentagon in Figure 4.  The arrows in the 10 piece solution show where tiny pieces are located   
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The number of solutions shown here for a regular polygon with n sides is 2n+1 for  Mps.  This has not 

been proven but is a conjecture based on the three solutions, triangle, square, pentagon.  This could 

easily be refuted if the hexagon does not permit some solution less than 13. 

If the a^2’ total solutions = 1 thru n+1  pieces continues for regular polygons the solutions will have 

increasing numbers of smaller pieces as n increases with a few large pieces as seen in the figures.   

As n gets really large but still finite the polygons get more and more circular yet the number of solutions 

are n+1 ‘large’.  At infinity we have a circle with only 3 solutions.  Perhaps instead of solutions increasing 

they start to decrease as a ratio of s/n. 

 

Spin Multiplication by superposition 
 

Spin Multiplication of squares by superposition Sms 

A square can be overlapped on top of itself and rotated 45 degrees to get 9 pieces when all 

lines are cut thru as shown in Figure 5.  We overlap this product on itself and rotate it 22.5 

degrees to get the next product having 49 pieces and then 11.25 degrees to get 225 pieces. 
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Overlapping a 2x2 grid gives the exponential sequence shown in Figure 6. 

 

 

Odd order square grids have a slewed exponential sequence of pieces as seen in Figure 7 with a 3x3 grid. 

 

 

Figure 8 with a 4x4 grid being even order returns a simple exponential sequence. 
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This regularity continues for all sorts of regular grids under this kind of binary symmetrical spin 

multiplication. 

  

 

Things get more complicated if we allow all three operations, translation rotation and spin.   This was 

attempted in Figure 10 with results as shown. 

 

There is much more to explore 
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Puzzle Books 
by Rik van Grol 

 
Introduction 
In the spring of 2020, when the first COVID19 lockdown in the Netherlands was lifted 
and shopping was allowed again, I went to Amsterdam to visit antique shops to hunt 
for puzzles. I found several puzzles I knew were there and considered too pricy/not 
interesting enough, but I also stumbled onto two small puzzle books. One was in-
complete, but was easily restored, the other was fine. More importantly, they have a 
locking mechanism I had not seen before. I have several puzzle books and for me 
this made me cross the point to allow me to say that I own a collection of puzzle 
books. So, I thought this was also a good moment to say something about them. 
 
So, puzzle books are the subject of this paper. If, for some reason, you were thinking 
about collections of books about puzzles, then I have to disappoint you. In this paper 
I am presenting a collection of mechanical puzzles that look like books. 
 
I define a puzzle book as a secret opening box in the shape of a book. Puzzle books 
have the size of a regular book, but that is not mandatory. Most puzzle books could 
not really hide in a bookcase; they would stand out. There are some “book-safes” 
that can actually hide very well and are intended to do so, but those are not puzzles. 
That puzzle books stand out is mostly due to the fact that they generally are made of 
wood. 
 
I intended to write this article for the postponed G4G14 in April 2021, but it was 
postponed two more times. In the meantime, I have been collecting more puzzle 
books. And on the way to G4G14 I visited the Lilly Library in Bloomington (IN) to look 
at the puzzle books in the Slocum Collection. In this article I am presenting 14 puzzle 
books in my possession that differ by their locking mechanism and/or their country of 
origin. Figure 1 shows the row of puzzle books presented. One puzzle is not included 

here because it would not fit (number 3). That knowing one is not incuded the 
number is bigger than 14 is because I have several copies of some puzzle books. 
Those copies look different but have the same origin/locking mechanism. 
 

 
Figure 1. Puzzle books presented in this paper, showing the range of sizes 

PUZZLES | 239

 

Puzzle books from Hungary 
If you visit Budapest, the capital of Hungary, and you wander into the Great Market 
Hall it is hard not to stumble on the first puzzle book presented here, see Figure 2. 
Also in souvenir shops throughout Budapest it is impossible for a puzzle collector  
not to notice these puzzles (unless you are fully focused on the other well-known 
puzzle from Budapest, a Sorrento-type puzzle box, which is even more dominantly 
available is all sorts and sizes). This puzzle book has a simple well-known opening, 
which is discussed in a book by Jack Botermans and Jerry Slocum [1]. The opening 
is in the spine of the book and can easily be recognized by a skew cut through the 
spine, see Figure 2. This lock is well-known, so I do not feel I give away anything. 
 

                            
 

Figure 2. Hungarian puzzle book and its locking mechanism (left & middle), 
and concealing the skew cut in the spine by smart decoration (right) 

 

Note that these puzzle books are not really sold as puzzles, but more as souvenirs. 
You can get this puzzle in many different designs – some traditional, others beauti-
fully decorated. In some puzzles the lock is better concealed then others. In one of 
the books the skew cut in the spine is concealed by a skew carving pattern on the 
spine, see Figure 2 right. This type of puzzle book was the first I purchased, several 
decades ago. At later visits to Budapest I purchased additional copies, see Figure 3. 
These puzzles have the size of a small pocket book (Height ~13 cm, Depth ~10 cm, 
Thickness ~3 cm). 
 

    
 

Figure 3. Range of typical Hungarian puzzle books 
 

During a recent visit to Budapest [2] I found a puzzle book with a slightly different 
locking mechanism. The lock is simpler, probably because the puzzle is smaller and 
the original locking mechanism would be too big. The size is odd and small (HDT 
9×8×2.5 cm), see Figure 4. 

1 

2 
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During the same visit to Budapest I went to the Ecseri Street Market (a large perma-
nent flea market) and I found an antique puzzle which I previously had only seen in a 
book by Jerry Slocum and Jack Botermans [3], see Figure 4. It is a stack of two woo-
den books on top of a base. There is a hidden compartment in each of the books, 
and a third compartment in the base. This antique puzzle is beautifully made with 
inlaid wooden decorations and finished with French polish. The base is 35×28 cm, 
the height is 12 cm.  

            
 

Figure 4 Small Hungarian puzzle book (left) and puzzle-book-stack (right) 
 

Puzzle books from Sri Lanka 
I have never visited Sri Lanka, but I managed to get several of their puzzle books. It 
is easy to recognize puzzle books from Sri Lanka. They are hand-carved and depict 
one or more elephants on the front and generally a woman’s face 
on the back, see figures 5 and 6. 
 

The first type has one big compartment that opens at the front of 
the book (unlike the Hungarian book that opened at the spine). 
The locking mechanism is simple, see Figure 6 middle. I found two 
copies of this puzzle in second hand stores in the Netherlands. 
 

The second type has four small compartments that all open from 
the front (Figure 6 right). The locking mechanism is the same as 
with the first type. This puzzle I purchased from Frans de Vreugd 
who visited Sri Lanka together with Peter Hajek [4] in 2012. 
 

             
 

Figure 6. Books from Sri Lanka; simple (left/middle), more complex (right) 

 
 

Figure 5 
 

3 

4 

5 
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Antique puzzle books from eBay 
With my interest in puzzle books I searched eBay for antique puzzle books. There is 
enough to be found, but it is not always easy to find samples that are reasonably 
priced and that you actually manage to purchase. Perseverance and some luck is 
required. Over the past few years I purchased three antique puzzle books. 
 
The first is a puzzle book that, as a puzzle, resembles the Sri Lanka puzzles, in that 
the front of the book slides off. It has a nice inlay on the front, see Figure 7. This 
book, however, is not professionally made. It is cut roughly and the way it is 
manufactured is amateuristic. Due to some design choices its solution is not 
immediately obvious, so it is still a nice sample. The origin is probably England. The 
puzzle has pocket book size (HDT 16×12×3.5 cm). 
 

      
 

Figure 7. A simple puzzle book with inlays, probably made by an amateur 
 
The second puzzle book is a professionally made puzzle. It does not show any inlays 
or pretty decorations, but it perfectly conceals its solution, see Figure 8 left. Apart 
from its weight (light) it feels like a solid piece of wood. If you would hide something 
fairly heavy you might actually get away with it. This is a simple but very good puzzle 
book. The origin is probably England. The puzzle has pocket book size (HDT 
16×12×3.5 cm). 
 
The third puzzle book is a small Anglo-Indian puzzle book, made from teak wood 
with brass inlays, see Figure 8 right. As a puzzle it is extremely simple, if you know 
the solution… The solution is well-hidden; another example of a simple but good 
puzzle book. The size is that of a small pocket book (HDT 12×9×3.5 cm). 
 

            
 

Figure 8. Two books with a well-hidden lock; English (left) and Indian (right) 
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Antique puzzle book from The Netherlands 
This is the puzzle I found in Amsterdam in an antique shop with which I started this 
paper, see Figure 9 left. I got two identical copies. They are very small (HDT 8×5×2 
cm). Interestingly the locking mechanism is one that I did not see before. As with 
most puzzle books, the locking mechanism is not difficult, but well-hidden. 
 

        
 

Figure 9. The smallest puzzle book I own is from Amsterdam (left), the biggest 
from France (middle), and the thickest from Cyprus (right) 

 
Antique puzzle book from France 
Searching the internet I also found a puzzle book in France. This is the biggest I 
have seen so far (HDT 31.5×22.5×5 cm). The lock is simple and easily spotted. The 
book has a beautiful inlay of a village scene, see Figure 9 middle. 
 
Puzzle book from Cyprus 
Most puzzle books presented so far are old or traditional. The puzzle book I found 
online from Cyprus is a more modern puzzle book. The locking mechanism is a 
combination of known locking mechanisms. The puzzle is quite large and meant to 
store a bible (HDT 25.5×18.5×7 cm), see Figure 9 right. 
 
Puzzle books from the International Puzzle Parties 
Two of the puzzle boxes are Exchange puzzles for the International Puzzle Parties. 
 
The first puzzle book is not meant to be a puzzle book. It is a storage box for a 
puzzle. It resembles a book, and is therefore included here. This puzzle is the 
Exchange puzzle from George Bell in 2015 at IPP35 in Ottawa, see Figure 10. 
 

                  
 

Figure 9. IPP35 Exchange puzzle from George Bell, closed and open 
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The second puzzle book is more a puzzle than a puzzle book. It looks like a book but 
is a sequential discovery box. After opening the book, which requires the largest 
number of steps of all presented puzzle books, there is a small storage area which 
contains a small puzzle. The book is designed by Louis Coolen and Adin Townsend, 
and exchanged at IPP34 in London in 2014 by Allard Walker, see Figure 10. 
 

                      
 

Figure 10. IPP34 Exchange puzzle from Allard Walker (left),  
book in puzzle lock from Robert Yarger (right) 

 
Puzzle book from USA 
Puzzle book number 14 is not a puzzle box that looks like a book, but an actual book 
that is locked by a puzzle, see Figure 10. The book is a book by Robert Yarger about 
his puzzles [5], STICKMAN Milestone Puzzle Book. 
 
Design features of a good puzzle book 
A good puzzle book is a good puzzle. The locking mechanism may be simple, as 
long as the lock is well-hidden. The next requirement would be to look like a real 
book. This would mean that the pages should look like pages as much as possible. 
The ultimate puzzle book might have a leather or cloth spine or even a complete 
cover so that it could be hidden on a bookshelf. A simple solution in order to hide a 
puzzle book amongst normal books might be to give the book a dust jacket.  
 
There is much more out there  
In this paper 14 puzzle books were shown. But there is much more out there. Most 
presented puzzle books are traditional and/or antique. I visited the Slocum Collection 
to see if I had missed obvious examples of puzzle books. This is not the case. The 
most important puzzle book not presented is the puzzle book from Akio Kamei. This 
puzzle book is well made, but quite traditional. It has a simple, not particularly well-
hidden solution. 
 
In recent times puzzle books with new and more difficult locking mechanisms have 
been developed. Some new puzzle books can be found on https:\\www.Etsy.com, 
and in books on puzzles. 
 
Puzzle books in literature 
To find puzzle books in literature is not easy. Before recently, at most one or two 
puzzle books would be shown in only a handful of books, mostly by Jerry Slocum 
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and Jack Botermans, see the references. Some puzzle books are documented in 
over 30 years of the Dutch puzzle magazine CFF. Recently a book about puzzle 
boxes has been published by Peter Hajek [6]. In this book quite a few puzzle books 
are discussed and presented. Also some recent puzzle books are documented in this 
book. It was published while this article was being written: amongst other puzzle 
boxes it shows more puzzle books than presented in this article and previously in 
other books. 
 
For publications from the Dutch Cube Club, Cubism for Fun (CFF), see the website: 
http://cff.helm.lu. 
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 Hi Folks, 

 For about the past four years I have been writing a math/puzzle story for the bi-monthly 

publication of the National Association of Watch and Clock Collectors (NAWCC).  The puzzles always 

involve my two protagonists Mr. Sherclock Holmes and his friend Dr. John Watchson (I am quite proud 

of coming up with those!).  Here is one of the puzzles (with NAWCC changed to G4G14).  The answer 

is below.  I hope you enjoy it.  ~Jim Guinn 

From Mart & Highlights, published by and used with permission from the National Association of 

Watch & Clock Collectors, Inc. 

The Adventures of Sherclock Holmes – Bird Watching 

 Consulting Time Expert Sherclock Holmes entered their London apartment to find his good 

friend Dr. John Watchson staring at his new Cuckoo Clock.  “Taken up bird watching, I see, Watchson.”  

“Very funny, Sherclock.  Actually I’m puzzled about something”, said Watchson.  “Well, that’s not 

unusual.  What is it?” said Sherclock.  “I’ve noticed that of the two weights on this cuckoo clock, the left 

one drives the time hands, the right one drives the cuckoo.  The chains themselves are identical.  The left 

one descends one link every two minutes, while the right one descends four links for every cuckoo.  It 

starts to cuckoo on the hour one cuckoo per hour, and on the half-hour just one cuckoo.  I started the 

weights at exactly the same height at twelve o’clock just before it started to cuckoo.  I’m wondering if 

the weights will ever be at exactly the same height again.”  “Well,” said Sherclock, “you can stand there 

and watch it for the next twelve hours, or I’m sure someone from G4G14 can help you with it.  I’m 

going to take a nap and please don’t let your cuckoo fiddling wake me up!” 

 Can you help Dr. Watchson figure out this Cuckoo Puzzle?  That is, can you determine the time, 

or times, when the weights will be at the same height?  To determine the exact time, you would need to 

know how the time weight descends as the clock ticks, and how quickly the cuckoo descends with each 

cuckoo.  For this puzzle, finding the time(s) to the closest minute is fine. 

 

Answer: 

 Amazingly, (according to my calculations) the weights will be the same height at six different 

times (per twelve hour period)!  The first will be after the weights have each dropped 60 links, at 2:00 

o’clock just before the cuckoo cuckoos.  The second is at 68 links, at 2:16 o’clock, the third at 300 links 

at 10:00 o’clock after the cuckoo has cuckooed 8 of its 10 cuckoos, the fourth at 308 links at 10:16 

o’clock, the fifth at 330 links at 11:00 o’clock after the cuckoo has cuckooed 4 ½ of its 11 cuckoos, and 

then the sixth and last, at 360 links, which is where the weights started out together at 12:00 o’clock just 

before the cuckoo cuckoos! 

Sherclock Bird Watching

Jim Guinn
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Stamping a Checker Board

Rachel Hardeman Morrill

July 1, 2022

Suppose you have an n× n checker board with n odd. A stamp with m blocks is a configuration of

m blocks that we do not require to be adjacent. For example, the following is a stamp with 4 blocks.

Can you use a stamp with n+1 blocks n− 1 times to cover all but one block of your n×n checker

board? The answer is yes! There is a way to cover the board such that the missing block is in the

corner. Since n is odd, there exists an integer k such that n = 2k + 1. If k is even, there is a way to

cover the board so that the missed block is in the center. I will describe both ways of stamping the

checker board in this brief article.

In order to cover all but one block of the board, the stamp with n+ 1 block must not hang off the

board for any of the n− 1 uses. For the covering that misses a block in a corner, consider a stamp on

a 2 × n grid where there is a block in the first column of the first row, a block in the first column of

every even row, and a block in the second column of every odd row. Here is an example of the stamp

when n = 5 to demonstrate.

Since there is one block in rows 2 to n−1 and two blocks on the first row, there are a total of n+1

blocks in the stamp. Starting at the top left corner of the board, use the stamp k times as you move

to the right. The result should have all but the last block of the first row of the board covered and a

checkered covering of rows 2 to n and columns 1 to n − 1. This is depicted on a 5 × 5 board in the

image below.
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Now turn the board a quarter turn counterclockwise. The top row should now have no blocks
covered.

Starting at the second column, use the stamp k times as you moved to the right. This will fill in the
checkered part of the board from row 2 to n and column 2 to n and all but the first block of the first
row. The full stamp covering is demonstrated on a 5× 5 board below.

For the covering that misses the center block, suppose that n = 2k + 1 with k even. Consider a
stamp that is 2 blocks by k + 1 blocks. Then the stamp has 2(k + 1) = 2k + 2 = n + 1 blocks. The
stamp for a 5× 5 grid is shown below.
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Starting at the top left corner of the board, stamp the board k/2 times. Since k is even, this is an

integer. The result is illustrated below for a 5× 5 board.

Now turn the board a quarter turn counterclockwise. Starting at the top left corner of the board,

stamp the board k/2 times. Repeat this action 2 more times, and the board will be covered with only

the center block not stamped. The full stamp covering is demonstrated on a 5× 5 board below.

This problem was a generalization of a question on the Fall 2019 Tournament of Towns.
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Warped-Grid Jig-Saw Puzzles

George Hart

   With a laser-cutter, it is easy to make one-of-a-kind jigsaw puzzles. The question then is what

pattern of cuts to use.  Here is a gallery of some experiments I have been making in which the cut

pattern  is  based  on  a  warped  grid.   A pseudorandom  grid-based  dissection  of  an  underlying

rectangular array is distorted to give engaging visual effects. 

 

Example pseudorandomly generated 25-piece puzzle

based on square grid, before warping the grid.  Such

designs can be warped in many ways.

Examples of warped 15×15 grids based on various

easy-to-program transformations of the unit square:

a) slight curve, b) swirl, c) bubble, and d) circle

100-piece laser-cut wood puzzles (with handpainted snowflake images) based on “bubble” warp, 11.75 

inch square.  Left example contains some 2×2 and larger blocks of cells, e.g., top-left corner, which I later 

decided should be avoided.  Right example avoids any such blocks.  (The “bubble” warp is inspired by op-

art paintings by Victor Vasarely.  The snowflake designs are based on photos by Kenneth Libbrecht.)
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80-Piece puzzle with simpler part shapes, using a

slight curve warping of the grid, 8×10 inches.

(Etched image is Seven Ballerinas by Picasso.)

80-piece puzzle using swirl pattern.  8×10 printed

photo was glued to wood before laser-cutting.

(Image is Ocean Park #24 by Richard Diebenkorn.)

100-piece “tree rings” puzzle based on circular 

warping of grid. Laser-etched circles are scaled in 

geometric proportion.

100-piece puzzle using contraction transformation of

grid.  Image is hand-painted based on Ernst Haeckel

drawing of Siphonophorae from Artforms in Nature.

This family of puzzles can be adapted to any desired level of complexity by choosing the resolution

of  the  underlying  grid.   An infinite  variety of  warping transformations  can  be coded up using

straightforward mathematical techniques to change the visual effect. Test-solvers report that these

puzzles provide a fun solving experience.  My G4G-14 exchange item is a small 25-piece puzzle

with a bubble transformation.  For more information, see:  http://georgehart.com/jigsaw
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Explanation: The puzzle is to fit 14 “rabbiduck” polyomino pieces into an 8x11 rectangle. (Gardner wrote 
about polyominoes in multiple columns. The specific polyomino pieces used are inspired by the 
rabbit/duck illusion that Gardner called the Rabbitduck in his autobiography.) 

14 “Rabbiduck” Pieces that look (crudely) like a rabbit or a duck depending on orientation: 

 

 
 

 

 

14 Rabbiducks

Haym Hirsh
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Hex-Pave 
by Carl Hoff (carl.n.hoff@gmail.com) 

 

 There are 15 integer sided equiangular convex hexagons with 
edge lengths of 1, 2, and 3 units (seen to the left).  The main objective is 
to pack all 15 pieces into a size 8 regular hexagon (the black boarder 
shown below).  This puzzle has 19 solutions. 
 
 Some auxiliary objectives can also be considered: 
 
(1) Pack the 14 pieces left after the smallest piece is removed.  

(3051 solutions) 
(a) and leave only 10 voids, the minimum possible, within the 

frame.  
(1 solution) 

(b) and leave 21 voids, the maximum possible, within the frame.  
(12 solutions if voids can touch at a corner, 3 solutions 
otherwise) 

(c) with no like colors sharing an edge. 
(75 solutions) 

(d) with no like colors touching, not even at a corner. 
(43 solutions) 

(e) with the 6 colors each in their own edge connected region. 
(1 solution) 
 

(2) Pack the 14 pieces left after the second smallest piece is removed. 
(76378 solutions) 

 
 Kadon Enterprises, Inc. offers a physical version of Hex-Pave in 
laser cut acrylic here: http://www.gamepuzzles.com/tiling4.htm#HPv. 
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StarHex-14TM 
The Beauty of Polyform Sets 

 

A presentation in 14-line sonnets 

by Kate Jones for G4G14  
kate@gamepuzzles.com 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

A product of 

Kadon Enterprises, Inc. 
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Their stellar highlight, at this grand event,  

Is just the latest stage in their ascent. 

 

Dear Martin Gardner’s writings were the gate  

Through which I found my fortune and my fate. 

 

And by a lovely match of tiles and times 
The number fourteen has inspired these rhymes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
1. 
Four decades of design and puzzle art   
Have filled my life and overjoyed my heart.  
 
I thank you all for treasuring my creations,  
We do have fans in many different nations, 
  
Whence ever more inventors join our line:  
We publish their designs, too, not just mine. 

 

From Theo Geerinck's brilliant creative mind  
New polyforms—his polystars—we find. 
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They plot upon a classic field—behold  

How triangles and hexagons do spill  

An infinite array. A tale is told 

How polystars this symmetry will fill. 

A classic wallpaper pattern 

2. 
The Cosmos spreads before us points of light,  

Each tiny dot a fire immensely far, 

A galaxy of giants, dim or bright,  

A burst of energy we call a star. 

Now let us model constellations fair 

With puzzle shapes that mimic starry skies,   

And let each star from none to six points share,  

No two alike, that fourteen figures rise. 
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Now may their hues not touch, a solver's dream,  

 

 

 

 

 

 

 

 

 

 

 

                                 Or group each color as a single beam. 
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3. 
Then let the puzzler build some pretty twins,  

Binary pairs or splendid symmetries  

 

Where every shape a glorious orbit spins 

The eye and mind with mirror forms to please. 
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Now capture all your stars within a hive  

That only corners touch, a mighty feat, 

 

 

 

 

 

 

 

 

 

PUZZLES | 259

Or join just thirteen so that stars arrive, 

2 points less, yet balance mirrored sweet. 

 

 

 

 

 

 

 

 

 

 

This marvelous set in Kastellorizo earned  

The Archimedes prize for puzzle fame. 
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With Archimedes, too, a fourteen turned  

Into an awesomely historic game. 

 

We celebrate today the old and new  

As polyforms define the good and true. 

 

 

 

Tricolor Stomachion 
The other 14-piece puzzle! 
 

See the Monograph with full 

analysis of all 1072 solutions, 

www.gamepuzzles.com/tsm.htm 

 

 

 

 

 

 

www.gamepuzzles.com  for the joy of thinking® 

Kadon Enterprises, Inc., Pasadena, MD 21122 
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Three Puzzles on a Familiar Theme 

Submitted by Justin Kalef, June 2022 

 

Explanatory note: Some time ago, I noticed an original copy of Accolade’s classic video game, ‘Hardball!’, 

offered for sale on eBay. The listing brought back fond memories of playing the game on my Commodore 

64 almost forty years ago, before enjoying a visit from my grandfather. I made the purchase from the 

somewhat mysterious seller, and soon received my package with the simple return address ‘Haddon Hall, 

UK’. The game was in good condition (other than the soundtrack, which appeared to have been 

modified), but I also found three sheets of handwritten notes stuffed into the box. Contacting the seller 

to return them proved impossible. I therefore took the liberty of reading them, in hopes of tracking down 

the writer. From what I could tell, all three of the sheets were excised from some longer work of 

literature, but I can’t tell whether it was a novel, a screenplay, or something else. One would imagine 

that the author – one S. Morgenstern – had some professional writing experience, but I haven’t been 

able to find anything else written by him or, perhaps, her. Still, the three fragments I discovered in the 

game box do hold some interest for those interested in solving logic puzzles. My own guess, admittedly 

unsubstantiated, is that S. Morgenstern became worried at some point that including the logic puzzles 

might alienate some of the intended audience, and therefore cut them. Still, they do seem to be just the 

sort of thing that might amuse some devotees of the Gathering for Gardner. All three fragments involve 

twists on the familiar ‘knights and knaves’ puzzles, and their odd setting within Morgenstern’s fantasy 

narrative may be charming for some. I therefore present these three ‘objets trouvés’, if you will, as my 

contribution to the G4G14 gift exchange. I have also worked out what I think are solutions to all three 

problems, and would be glad to pass those solutions along to any interested parties who write to me.  

 

Best to all, 

Justin Kalef 

 

 

Fragment 1 

 

“Just one moment,” said Vizzini, standing up theatrically. As the Man in Black and Buttercup turned in 

surprise, he started cackling. “Did you really think that I, one of the great geniuses in all history, would 

be tricked so easily? Did you imagine that you were the only person on Earth with the foresight to build 

up a tolerance to iocane powder? You fool!” 

The Man in Black stepped up to the table again, noticing an unsteadiness in his feet. “Clever. But I’m 

afraid it’s of no consequence anyway. The Princess is safe with me and, as you admitted, you are no 

match for my physical strength.” 

This somehow made Vizzini giggle. “Don’t you see? While you were distracting yourself with your little 

game with the powder, you failed to notice the unusual color of the wine. Do you taste that bitter flavor 

now? The entire bottle has been treated with the extract of phlephm root. It has a rather paralyzing 

effect, don’t you think? You should be feeling a numbness in your knees about now. I suggest we sit.” 
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The Man in Black did find it more difficult to move his legs. As he sat on his log again, Vizzini continued: 

“Now, as everyone knows, the only perfect antidote to phlephm root extract is the juice of the phlephm 

berry. I don’t suppose you have any phlephm juice with you? I thought not. I, however, took the 

antidote minutes before you arrived. I foresaw everything! And if you’d like to take some before it’s too 

late, I advise that you watch and listen closely.” With that, Vizzini drew a gold cup and a silver cup out of 

his bag. On the gold cup were engraved the words ‘One of these two cups is from Sicily’. On the silver 

one was engraved ‘The gold cup is from Sicily.’ “These cups are two of my four favorites,” he explained. 

“One is Sicilian, one is from Florin, one is from Spain, and one is from Greenland. Each is made of a 

different metal.” 

“I see only two,” said the Man in Black, noticing that he could no longer move his thighs. 

“I take at most two with me when I travel”, said Vizzini. “But I always make sure that any statement 

engraved on any of them is true or false, according to a scheme. The Spanish one, you see…” 

“No need to say more,” said the Man in Black, feeling a strange tingling in his lower back. “I’ve known 

too many Spaniards.” 

“I was going to say,” replied Vizzini, “that I make sure that any statement engraved on the Spanish one is 

true, in memory of one of my frustratingly principled recent employees. Now, of course, I make sure 

that any statement on the Sicilian cup is false, because – as you should know by now! -- one should 

never go in against a Sicilian when…” 

“Please,” begged the Man in Black, “I’m already feeling a tightness in my chest. A little less exposition 

and more haste, I beg you.” 

“Fine. I always ensure that the statements on the cups from Spain and Greenland are true, and that 

those on the cups from Sicily and Florin are false. Into the cups bearing false statements, if either or 

both are here, I will pour wine laced with ospion, a rather unpleasant toxin. One drop, and you’ll be lying 

here in terrible agony for two full days as you die slowly. There is no known antidote. Into the cup from 

Spain, should it be among these two, I will pour wine containing enough phlephm juice to cure your 

current paralysis instantly. And into the cup from Greenland, should it be here, I will pour wine 

containing the only other antidote to phlephm root extract: tea made from phlephm leaves. A sip of that 

tea, and you will slip instantly into a very pleasant sleep for twenty-four hours, after which you will 

awaken to find that the paralysis is gone, I am miles away, and the Princess is dead.” 

As Vizzini turned away with the cups and fiddled with hidden bottles, the Man in Black asked how he 

could know that both cups would not be poisoned. “You can’t!” retorted Vizzini, returning them to the 

table. “But consider: given what you know of me, am I the sort of person who would boldly give his 

enemy a chance to recover, and then perhaps to overpower me and force me to drink my own poison? 

Or am I the sort of man who would place his enemy in an impossible situation? Now, it might be sensible 

to imagine that I would be unsportsmanlike. But clearly, that cannot…” 

“I’d rather rely on logic than psychological speculations,” interrupted the Man in Black, feeling a growing 

coldness in his fingers. “But you seem not to have supplied me with enough information to make that 

possible.” 
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“On the contrary,” cried Vizzini, “I’m giving everything away! Look at the backs of the cups!” And he 

twisted them around. On the back of the gold cup was engraved ‘This cup is from Sicily if, and only if, the 

silver cup is from Florin.’ On the back of the silver cup was engraved ‘This cup is from Sicily if, and only if, 

the gold cup is from Greenland.’ The Man in Black was glad that, in addition to the arts of navigation, 

piracy, mountaineering, and swordsmanship he had now studied intensely for many years, he had 

undertaken rigorous training in deductive logic. And he was relieved to recall that iocane powder leaves 

one unable to speak falsely for several hours, even if one is immune to its deadly effects. But he knew 

that, in less than a minute, he would lose the ability to reach for either cup.  

 

Fragment 2 

 

Westley: … and I have been Roberts ever since. Except now that we’re together, I shall retire and hand 

the name over to someone else. Is everything clear to you? 

 

Buttercup: Not yet. I just don’t see how you could trust a man – Ryan, I think you called him – after he’d 

lied to you so often. I mean, he’d given you a false name, and said he was probably going to kill you 

every morning. How could you even sleep with that fate hanging over you? 

 

Westley: Well, I was quite worried at first, but some members of the crew tried to put my mind at ease 

right away, telling me that they knew Roberts… er, Ryan, as I know him now… meant me no harm. 

Others on the crew told me otherwise, but I soon came to understand that those ones were simply lying. 

 

Buttercup: The crew members were lying to you? 

 

Westley: All day long, I’m afraid. At least, some of them lied on some of the days. But it didn’t take that 

long to sort it all out. You see, each day, they would decide among themselves which would tell the truth 

and which would lie. One that had been decided, they would keep it up all day, either lying all the time or 

telling the truth all the time until they had gone to sleep. And the next morning, they would meet up 

secretly and decide who would lie and who would tell the truth on that day. Some of them switched more 

or less every day, while others stayed as liars or truth tellers for months at a time. One never knew what 

it was going to be.  

 

Buttercup (narrowly avoiding a sudden fire with Roberts’ help): It really sounds dreadfully confusing. 

How did you ever figure out which were lying for the day and which were telling the truth? 

 

Westley (continuing to slash away the vines blocking the path): Fortunately, it didn’t take me that long 

to come up with a few questions I could ask the crew every morning that would tell me whom I could 

trust and whom I couldn’t – and even when I knew my crewmates were lying, I was also able to get 

whatever information I needed from them. In fact, I could instantly learn the truth of whatever I was 

interested in, since the rest of the crew always answered my questions as well as they could. During 

those three years – three years and a bit, really – I kept a diary of who told the truth and who lied on 

each day, thinking the pattern of liars and truth-tellers might repeat itself: I mean, I thought there must 

come a day when each member of the crew would lie or tell the truth just as they already had on some 
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single day I had already spent with them. But they managed to avoid repeating any such pattern until 

there were no more new ones to try. Coincidentally, perhaps, that was on the same day that Ryan took 

me to his room and told me his great secret. 

 

Buttercup: What an extraordinary story. But what did you ask them each morning to figure out which 

ones were lying and which were telling the truth? And these crewmates: did they all… how many did you 

say there were? 

 

Westley: I didn’t say. But why don’t you try to figure that out? I’d hate to spoil the fun for you. 

 

(Buttercup widens her eyes and nods, then immediately furrows her brow in a confused look. Turning, 

she falls with a shriek into a lightning sand pit). 

 

 

Fragment 3 

 

Westley demands the gate key. Yellin at first denies having such a key, but changes his tune when Inigo 

tells Fezzik to tear Yellin’s arms off. “Oh, you mean this gate key,” he quickly replies. “You may have it, 

but you won’t know which gate to open without me. One leads safely into the main floor of the castle, 

and the other five lead to the various levels of the Zoo of Death that hides beneath it.”  

 

“We don’t need you for that,” says Inigo. “Now that we have your key, it won’t take us long to try all six 

doors.”  

 

Yellin laughs. “No, not long at all, if there’s anything left of you by the end. If you try the door that leads 

to Level Five, for instance, you’ll have to contend with Prince Humperdinck’s green speckled recluse – a 

cherished pet spider that makes its home quite near the handle of the door, in back. You’d never know 

it’s there unless you were to disturb it by trying the handle. If you were unwise enough to do so, you’d 

find out why they say that, compared with the green speckled recluse, the black widow is a rag doll. And 

these signs you see above the six doors? They’re not as helpful as they look, since only the one that 

leads to the main floor is correct.” 

 

“So all but one of the six signs has a lie written on it?” 

 

“That’s not such a terrible average when you consider that this system has kept us safe,” replies Yellin. 

“But you see my point. This key may open the door to the castle, but you’ll need my help if you want to 

get in safely, just as I need your help to ensure my safe return to Holland once the Prince discovers my 

betrayal. I’ll need a thousand gold florins, please: Dutch guilders would be my preference, but I’ll accept 

whichever you happen to have between you. Without that many gold coins to jog my memory, I’m 

afraid I won’t be able to recall just which gate you should open.” 

 

At the words ‘jog my memory,’ Inigo sees in a flash – but still too late – what’s about to happen. Before 
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he can shout out his warning, Fezzik delivers Yellin a blow that leaves him quite unconscious and mostly 

dead. There is no time for another trip to Miracle Max, and the three adventurers have no more gold 

coins, anyway. Instead, they must rely on Westley’s logical skills to make their way inside the castle in 

time to prevent the wedding and rescue Buttercup. The gates are all helpfully marked with letters (A to 

F from left to right), and the signs above them read as follows: 

 

Sign over Gate A: This gate and Gate E lead to Levels 4 and 5 of the Zoo of death, in some order. 

 

Sign over Gate B: Gate F does not lead to the main floor of the castle. 

 

Sign over Gate C: No gate to the left of this one leads to Level 4 of the Zoo of Death 

 

Sign over Gate D: This gate leads either to Level 1 or Level 3 of the Zoo of Death.  

 

Sign over Gate E: This gate leads to the main floor of the castle. 

 

Sign over Gate F: Gate D does not lead to the main floor of the castle or to Level 3 of the Zoo of Death. 

 

Westley, thanks to his extensive training in logical thinking, figures out a trick for solving the problem 

quickly. Inigo opens the door he indicates, and they make their way to the main floor just as Prince 

Humperdinck demands that the Impressive Clergyman rush to the end of the wedding ceremony.  
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Jumping Julia Mazes 
By Daniel Kline 

 
The Julia Robinson Mathematics Festival (jrmf.org) has been using Jumping Julia 
mazes for over a decade at our math festivals, events designed to share fun, 
meaningful math with K12 students. Our Jumping Julia mazes are based on Number 
Mazes, which were first published by Sam Loyd on April 24th, 1998 and popularized by 
Robert Abbott.1 At our in-person festivals, Jumping Julia mazes are displayed on large 
floor mats that students can literally jump through to solve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Jumping Julia maze is a grid of numbers, like the one below. To solve a Jumping Julia 
maze, you need to follow these rules: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
1 http://cs.gettysburg.edu/~tneller/rjmaze/index.html 

Students on a Jumping Julia maze mat at a 2019 math festival 

1. Start on the top left square. 
 

2. The number you are on tells you 
how many squares you must jump. 
 

3. You can only jump in a straight line 
left, right, up, or down. You cannot 
move diagonally or in an L-shape. 

 
4. Your goal is to reach the bottom 

right corner. 
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Because COVID prevented us from hosting in-person festivals, we wanted to find 
another way to share Jumping Julia mazes. We created an online app for Jumping Julia 
mazes that is free for everyone and has 45 puzzles of different sizes and difficulty. You 
can find our Jumping Julia app here: www.jrmf.org/activities/jumping-julia. 
 
Here’s a sample of some of our favorite Jumping Julia mazes: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Puzzle 1 Puzzle 2 

Puzzle 3 Puzzle 4 
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As you explore our Jumping Julia mazes, here are some questions to think about: 
 

1. Can you find more than one solution for each maze? 
2. What is the fewest number of jumps you need to solve each puzzle? 
3. Can you find a solution that visits every square? 
4. Are there squares that aren’t helpful for solving a puzzle? What makes them 

unhelpful2? 
5. Can you find a strategy that helps you solve any Jumping Julia maze quickly and 

efficiently? 
 
Recently, we’ve been able to host in-person festivals again, and we’re currently trying to 
find the best way to turn our Jumping Julia mazes into a main attraction. Because of 
this, we wanted to design a much larger maze with multiple goals, and I wanted to leave 
the puzzle design challenge we’ve been working on here for you all to grapple with: 
 
 

 
2 Words like “helpful,” “unhelpful,” “quickly,” and “efficiently” are left intentionally vague. Each of these terms 
may mean different things to different people, and we leave it up to you to decide which definition is most 
meaningful to you! 

1. Make an 8 x 8 Jumping Julia maze 
with 3 goals in the non-start corners. 
 

2. Make each goal a different difficulty 
(you get to decide what “difficulty” 
means). 
 

3. Include at least one “loop” trap. You 
can see a loop trap made out of four 
2’s in the example puzzle on page 1. 

 

Want your own Jumping Julia maze mat? Purchase one 
through our website, or learn how to make your own for free! 
Learn more here: www.jrmf.org/maze-mat. 
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Chapter 8 of Can You Outsmart an Economist? by Steven E. Landsburg
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Chapter 8

ARE YOU SMARTER THAN GOOGLE?

In the years I’ve been blogging at TheBigQuestions.com, I

haven’t shied away from controversy. Religion, politics, and man-

ners are standard fare, though I try not to post unless I have some-

thing at least a bit novel to say. As a result, I’m usually not

preaching to any particular choir, which means I risk offending

every variety of knee-jerker.

I’ve gotten used to being called a radical socialist, a mindless

liberal, a heartless conservative, and a reactionary mooncalf. But

in all my years of blogging, no post has inspired more vitriol than

one titled “Are You Smarter Than Google?”.

In fact, it’s not even close. This post generated many thou-

sands of responses, both on my own blog and others, a great

many of them demanding that I be fired, publicly humiliated,

and/or banned from the Internet. I don’t delete comments, even

when they’re very strongly worded, unless they’re extremely abu-

sive and/or quite thoroughly devoid of intellectual content. In this

case, I deleted many hundreds.

PUZZLES | 271

What was the content of this post? It was the following brain

teaser:

1

ARE YOU SMARTER THAN GOOGLE?

There’s a certain country where everybody wants to have a son. Therefore each

couple keeps having children until they have a boy; then they stop. What fraction

of the population is female?

Well, of course you can’t know for sure, because maybe, by

some extraordinary coincidence, the last 100,000 couples in a row

have gotten boys on the first try, or maybe, by an even more ex-

traordinary coincidence, the last 100,000 couples have had to try

eight times before succeeding.

Therefore (as I told my readers in the original blog post), the

question is meant to be answered in expectation, which means this:

If there are a great many countries just like this one, what fraction

of the population is female in the average country?

This problem has been around, in many forms, for at least

half a century, but it keeps finding new life. I found it in a chil-

dren’s puzzle book when I was about ten years old, and (much

more recently) Google has used it to screen job candidates. The

official answer — that is, the answer I found in the back of that
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puzzle book, and the answer Google reportedly expected from its

job candidates — is simple, clear, and wrong.

And no, it’s not wrong because of small real-world discrepan-

cies between the number of male and female births, or because of

anything else that’s extraneous to the spirit of the problem. It’s

just wrong. The correct answer, unlike the expected one, is not so

simple.

So: are you smarter than the folks at Google? Before you read

ahead, what’s your answer?

I’ll wait....

Ready now?

Okay, let’s continue.

The answer Google seems to have expected is the same answer

I gave when I first saw this problem long long ago. It goes like this:

Each birth has a 50% chance of pro-

ducing a girl. Nothing the parents do

can change that. So each individual

child is equally like to be male or fe-

male, and therefore, in expectation, half

of all the children are girls.

I’ll give you another chance to take a break. Before you read

ahead, what’s wrong with that reasoning?
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Ready?

Okay, then:

Actually, most of it is right. Each birth has a 50% chance of

producing a girl — check! Nothing the parents do can change that

— check! So, each individual child is equally likely to be male or

female — check!

But it does not follow — and in fact is not true! — that in

expectation, half of all children are girls.

What does follow is that, in expectation, the number of boys

and the number of girls are equal. But that’s not at all the same

thing.

To see why not, try this much easier problem:

2

EGGS AND PANCAKES

Every day I flip a coin to decide what to have for breakfast. If the coin comes up

heads, I have two eggs and one pancake. If it comes up tails, I have two eggs and

three pancakes. On average, what fraction of my breakfast items are pancakes?

THE WRONG SOLUTION: On the average day (in fact each and every day

day!) I have exactly two eggs.

On average day, I also have two pancakes (two being the average of one and

three). So on average, the number of pancakes is equal to the number of eggs.
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Therefore on average, half my breakfast items are pancakes.

Except for the final sentence, all of that is true but most of it

is irrelevant. I do in fact have two pancakes on the average day, but

that has nothing to do with the question. Here’s the right answer:

THE RIGHT SOLUTION: Whenever I flip heads, 1/3 of my breakfast items

are pancakes. Whenever I flip tails, 3/5 of my breakfast items are pancakes. The

average of those two numbers is 7/15. The answer to the question, then, is that

on the average day, 7/15 of my breakfast items are pancakes.

Here’s the analogy:

Imagine many breakfasts Imagine many countries

At the average breakfast, the number of
pancakes is equal to the number of eggs

(TRUE!)

In the average country, the number of girls
is equal to the number of boys

(TRUE!)

Therefore at the average breakfast, the
fraction of items that are pancakes is 1/2

(FALSE!)

Therefore in the average country, the
fraction of children that are girls is 1/2

(FALSE!)

MORAL: Two things (be they eggs and pancakes or

boys and girls) can be equal in expectation,1 but that

tells you nothing about their expected ratio.

The gist of that moral is that the official answer to the Google

problem is wrong. But we still have to figure out what’s right.

It turns out that the correct answer depends on the size of the

1
Remember that “in expectation” means the same thing as “on average”.
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country. This is easiest to think about when the country is so tiny

that it has just one family. Let’s solve that case first; then we’ll

move on to bigger countries.2

Here are some possible configurations for that one family:

PROBABILITY CONFIGURATION FRACTION FEMALE

1/2 B 0

1/4 GB 1/2
1/8 GGB 2/3
1/16 GGGB 3/4

From this, we can see that the number of boys is always exactly

1.

The number of girls, of course, can be anything at all, but we

want to know what it is on average. For that, we take each possible

number, multiply it by the corresponding probability, and add up,

as follows:

2 If you — like many of my blog readers — are prepared to object that

the one-family assumption is contrary to the spirit of the problem, let me

assure you that I agree with you. I’m solving this case first not because

it’s the most important case, but because it’s the easiest. I hope that

you, unlike some of my more impatient blog readers, will bear with me.
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1/2Probability
of 0 girls

x   0        =   0

1/4Probability
of 1 girl

x   1        =   1/4

1/8Probability
of 2 girls

x   2        =   1/4

1/16Probability
of 3 girls

x   3        =   3/16

Number of girls

...
...

..

.
...
1

The numbers in the infinitely long column on the right add up

to 1. (If you don’t believe me, try adding several terms and you’ll

see them approaching closer and closer to 1.) That is, the expected

number of girls is equal to the expected number of boys — just as

we knew it must be.

But to get the expected fraction of girls, we need to do the

same calculation with fractions of girls instead of numbers of girls.

And it comes out like this:
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1/2Probability
of 0 girls

x   0        =       0

1/4Probability
of 1 girl

x   1/2        =   1/8

1/8Probability
of 2 girls

x   2/3        =   1/12

1/16Probability
of 3 girls

x   3/4        =   3/64

Fraction of girls

...
...

..

.
...
.306

The numbers in the right hand column add up to just about

.306, or 30.6%3

Now again — that calculation is only correct for a country

with just one family. For a country with two families, a similar but

more complicated calculation gives an expected fraction of about

38.63%. If you want to see that calculation, you can look in the

appendix to this book.4

For a country with 10 families, the expected fraction is about

3 Where did the 30.6% come from? It takes a bit of work. If you remember

your calculus, you might be able to show that the sum of the infinite

series is actually log(2) − 1, which is just about 30.6%. If you don’t

remember your calculus, I hope you’ll take my word for this.
4 The calculation in the appendix will appeal to the sort of readers who

find that thing appealing and not to others. Fortunately, the main point

here is not to follow the complicated calculation, but to understand why

it’s necessary. That is, the important thing is not so much to understand

the right answer as to understand why the “obvious” answer is wrong.
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47.51%. For a country with 100 families, it’s about 49.75%. For a

country with 1000 families, it’s about 49.98%. For a country with

5000 families, it’s about 49.995%. For a country comparable to

the United States, with about 100,000,000 families, the expected

fraction is about 49.999999975%.

You might be tempted to say, “Aha! Surely there’s no impor-

tant difference between 49.995% and 50%. So the official reasoning

is correct after all!”

Hold on there! First of all, even if the correct answer were

exactly 50%, the official reasoning would still be entirely wrong.

We don’t generally give full credit (or even partial credit) for bad

reasoning that just happens to get the right answer.

Besides, who says there’s no important difference between

49.995% and 50%? Try telling that to Al Gore, who got 49.995%

of the Bush/Gore vote in Florida in the year 2000, and thereby lost

the presidency of the United States.

Or if that doesn’t convince you, try this variation, where the

official reasoning will lead you neither slightly astray nor moder-

ately astray or even hugely astray, but infinitely astray:
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3

THE GOOGLE PROBLEM REDUX

There’s a certain country where everybody wants to have a son. Therefore each

couple keeps having children until they have a boy; then they stop. What is the

ratio of boys to girls?

This differs from the original Google problem by asking about

the ratio of boys to girls, rather than the fraction of girls in the

population.

Again, the answer in any one country could of course be just

about anything, so we need to specify that the question is to be

answered in expectation, or in simpler words on average over many

such countries.

SOLUTION: There’s always some chance — perhaps a tiny chance, but still

some chance — that every single family has a boy on the first try. If that happens,

there are no girls, so the ratio of boys to girls is infinite.

To get the expected ratio, we have to average over all possibile ratios, in-

cluding infinity. That average is infinity.

If you said that the answer was 1/2, you were infinitely wrong.

It turns out that a lot of people — and especially, I suppose,

the sort of people who like to solve brain teasers on the Internet —

have seen some version of this problem before, and have had the

(correct) insight that in expectation the number of boys and the
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number of girls must be equal. Some of them tend to feel pretty

proud of that insight, which makes them exceptionally reluctant to

admit that it fails to solve the problem.

I’d intended to blog twice on the subject — once to pose the

puzzle and once to reveal the answer. Instead, the discussion ended

up stretching over six blog posts. You can find links to all of them

at www.TheBigQuestions.com/google.html.

A lot of readers fell into the trap. A lot of those defended

their answers vigorously, then gradually saw the light as I and

other commenters pointed out their errors. Those people learned

something, and many of them were delighted. That delighted me,

too.

Others brought up interesting and valid new twists. Here are

a few examples:

• My analysis assumes that all families have finished reproduc-

ing. What if we take a snapshot before the last family gets

its son? (Answer: It depends on when you take the snapshot.

But in no case is the expected fraction of girls equal to 1/2.)

• What if you count the parents and not just the kids? (The

answer changes, but it’s still not 1/2.)

• What if the country’s population is literally infinite? (Answer:

Then there are infinitely many girls and infinitely many boys,
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giving a fraction of infinity over infinity, which is not a number

at all, and certainly not 1/2. Besides, who ever heard of a

country with an infinite population?)5

But others kept returning to the comments section to defend

the wrong answer, while a great many others jumped into the fray

to help point out their errors — help that was not always appreci-

ated.

The whole thing might have died down in a few days had it

not caught the attention of an Internet phenomenon named Lubos

Motl. It’s been said of Lubos that he’s hard to ignore, but it’s

always worth the effort. I eventually took this advice to heart, but

not before we had several rounds of increasingly bizarre correspon-

dence.

Lubos is a physicist by training and a crank by choice. He

appears to haunt the Internet twenty-four hours a day from his

home in the Czech Republic. When he blogs about physics, he’s

often clear, accurate and generous with his explanations. The rest

of the time he burnishes his reputation as a nut.

That’s what he was doing when he announced on his blog that

5 In a delightfully ironic twist, many of the readers who insisted on as-

suming the population was literally infinite were the same readers who

excoriated me for working through the case of a single-family country,

even for illustration, on the grounds that a single-family country is “un-

realistic”.
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the only acceptable answer to the Google problem is 50%, and that

you (or in this case I) would have to be a complete idiot to believe

otherwise. He gave absolutely no argument to support this po-

sition, and repeatedly asserted that no argument was necessary.

Those who know him will recognize this as classic crank-mode Lu-

bos.

Because Lubos was quite insusceptible to reason (completely

ignoring, for example, a series of simple numerical examples that

proved him wrong, and refusing ever to state the secret additional

assumptions that he claimed would support his 50% answer), I

went a different route and publicly offered to bet him up to $15,000

(and anyone else up to $5000) that a computer simulation (for a

country with four families reproducing for 30 generations) — with

disputes over interpretation to be settled by a panel of randomly

chosen statistics professors from top departments — would prove

me right.

At first a dozen readers stepped up to get in on this bet, but

they all soon either changed their minds or mysteriously stopped

responding to emails.

Then I screwed up.

A reader named Larry suggested a slightly different bet, which

I accepted without carefully reading his terms. This bet turned out
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to be stacked against me.

I knew that in a country with four families, the expected frac-

tion of girls is about 44%. I therefore agreed to Larry’s bet that a

series of simulations would show it to be less than 46.5%, leaving

a little room for statistical anomalies. But I overlooked Larry’s

stipulation that we include the parents in the count. This turns

out to drive the expected ratio up over 46.5% (though it’s still less

than 50%).

Having rashly accepted Larry’s challenge, I was legitimately on

the hook for a $5000 bet I was almost sure to lose. I’d have paid up

if necessary, but Larry most graciously suggested that he’d settle

for some autographed books.

Hundreds of others refused to take the bet but continued to

defend the wrong answer. A happy exception was a reader known

to me only as Tom, who started out as a serial repeater of false and

tired pro-50% arguments. I (and others) tried patiently pointing

out his errors, but he seemed hell-bent on ignoring everything we

said — to the point where I eventually lost my patience and said

“I’m sorry, but it appears that you are too stupid to think about

this brain teaser”. To his great credit, Tom responded not by

digging his heels in further, but by taking a little time to think

— and then returning a few days later with a beautifully reasoned
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essay that not only explained the right answer but offered a whole

new (and completely correct) explanation of why the answer cannot

possibly be 50%. He graciously allowed me to share his essay with

my readers as a guest poster, and I know from my email that it

helped a lot of people see the light.

That happy experience aside, I remain astonished that so many

became so emotionally invested in defending the wrong answer to

a simple brain teaaser. Clearly, the right answer comes as a sur-

prise to many people. It came as a surprise to me at first! But I

still don’t quite get why so many people are so resistant to being

surprised. Or more to the point: How does someone get so emo-

tionally invested in a simple brain teaser that he is willing to make

the same false arguments over and over and over and over and over

and over and over again, but not care enough to read and digest

the right answer? Perhaps that would be a good puzzle for a book

called Can You Outsmart a Psychologist?

* * * *

Over many years of teaching, one thing I’ve learned is that

when students don’t see the point of pure theory, you can usually

snag their attention with an application to sports. (Interestingly,

this works best with students who are inclined to dismiss pure

theory as “just a game”.)
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Let us, then, turn to the age-old issue of “hot hands” in basket-

ball. The question is whether basketball players experience good

and bad streaks beyond what you’d expect from pure chance. Of

course we’ve got a lot of data on this, but historically a great

many people have misinterpreted those data—precisely because

they didn’t understand the issues in the great Google problem con-

troversy.

I’ll tell you that story in a moment. But first, let me show you

how to make some money.

We’ll play a game: One of us flips a coin four times in a row

to get three pairs of consecutive H’s and T ’s. For example, if you

flip HHTH, your three pairs are HH, HT , and TH. If you flip

THTT , your pairs are TH,HT, TT .

Now: I’ll give you a dollar for each HH, and you give me a

dollar for each HT .

This is a perfectly fair game, because HH and HT are equally

likely. If you doubt me, try writing down all sixteen possible out-

comes, and count all the HH’s and all the HT ’s. There are exactly

twelve of each:
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Number of HH Number of HT

HHHH 3 0

HHHT 2 1

HHTH 1 1

HHTT 1 1

HTHH 1 1

HTHT 0 2

HTTH 0 1

HTTT 0 1

THHH 2 0

THHT 1 1

THTH 0 1

THTT 0 1

TTHH 1 0

TTHT 0 1

TTTH 0 0

TTTT 0 0

TOTAL : 12 TOTAL : 12

If you play this game against an experienced gambler, he or she

will quickly realize that it’s fair. First, experienced gamblers have

a very good sense of facts like “HH and HT are equally likely”.

Second, if you play long enough, you’ll probably both come pretty

close to breaking even on average, which tells you that the game is

probably fair.

Now try a variation:
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4

WANNA PLAY?

Once again, we’ll flip four times to get three sequences. We’ll count the HH ’s

and the HT ’s. I’ll give you a number of dollars equal to the percentage of those

sequences that are HH , and you give me a number of dollars equal to the per-

centage that are HT .

Does that game strike you as fair?

SOLUTION: If you think like so many of my blog commenters, you’ll say “Well,

HH and HT are equally likely, so on average half of all the HH and HT flips

will be HH and the other half will be HT . This is another fair game.”

If you do think that way, please contact me. I’d like to play this game against

you. Because here are the relevant percentages:
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Number of HH Number of HT Percentage of HH

HHHH 3 0 100

HHHT 2 1 67

HHTH 1 1 50

HHTT 1 1 50

HTHH 1 1 50

HTHT 0 2 0

HTTH 0 1 0

HTTT 0 1 0

THHH 2 0 100

THHT 1 1 50

THTH 0 1 0

THTT 0 1 0

TTHH 1 0 100

TTHT 0 1 0

TTTH 0 0 −

TTTT 0 0 −

TOTAL : 12 TOTAL : 12 AV ERAGE : 40.5

In each row, the percentage shown is the percentage of all pairs starting with H

that are HH . (In the last two rows, there are no pairs starting with HH , so the

ratio can’t be computed. If our flips produce either of those patterns, no money

changes hands.)

The average of all the percentages is 40.5%, which is definitely not at all the

samething as 50%. On the average play of this game„ I will pay you $40.50 and

you will pay me $59.50. In the long run, I make an average of $19 each time we

play.
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Themoral? Two things (in this caseHH andHT can be equal

in expectation — that is, they occur equally often — but that tells

you nothing about their expected ratio. Perhaps that moral rings

a bell by now.

Now back to the hot hands.

Take a ball player. Put him at a distance from the basket

where he makes just about half his free throws. (This distance will

be different for different players.)

Have him take four shots. Write down an H for each success

and a T for each miss. Repeat with many different players.

If there are no hot hands, then HH and HT should occur

about equally often. (That is, after a successful shot, a second

success should be no more likely than a miss.) So a good test of

the hot hand theory would be to count the HH’s and the HT ’s for

all the players, and see whether the totals are roughly equal.

In 1985, a group of researchers (let’s call them GVT, because

those were their initials) set out to analyze exactly this experiment.

Unfortunately, they kept track of the wrong statistic. Instead of

asking whether, on average, there are equal numbers of HH and

HT , they figured they might as well ask whether, on average, there

are equal fractions ofHH andHT . After all, equal numbers should

be the same thing as equal fractions, right? At least that’s what so



PUZZLES | 290

many of my blog commenters thought — and GVT made exactly

the same mistake.

So they counted pairs and computed fractions. And, coinci-

dentally, they discovered that among all pairs that start with H,

on average just about half were HH and half were HT .

Here’s what they figured: The percentages for HH and

HT are about fifty-fifty. That’s just what you’d expect from a

series of coin flips. So foul shots are like coin flips. There are no

hot hands.

Here’s what they should have figured: The percentages

for HH and HT are about fifty-fifty. If these were coin flips, we’d

expect them to be about 40.5 and 59.5. We’re getting a much

bigger fraction of HH’s on the basketball court than we’d get from

a coin flip. The hot hand must be real.

It took almost twenty years before another group of researchers

noticed this mistake. Meanwhile, GVT had fooled not only them-

selves, but a substantial fraction of the economics profession, into

believing that their study had rejected the hot hand hypothesis,

when in fact it had confirmed it.6

6 This doesn’t necessarily mean that the hot hand hypothesis is true — it

means only that this particular bit of evidence points in that direction.

There is other important evidence in both directions, some of it collected

(and correctly interpreted) by the same GVT team.
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Once again, the obvious can be the enemy of the true. It’s

“obvious” that if boys and girls are equally likely to be born, then

on average, the fraction of girls should be 1/2. It’s equally obvious

that if you’re equally likely to flip HH and HT , then on average,

the fraction of HH’s should be 1/2. Neither of those things is true.

If you insist on believing them, you’re an easy mark for coinflipping

con men.
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Topological Dance Puzzles 

Karl Schaffer 

 

Solutions to most problems are found in my paper  “Dancing Topologically” in the Bridges 

Math and Art Conference Archives, 2021. Bridges 2021 Proceedings. Pp 79-86. 

http://archive.bridgesmathart.org/2021/bridges2021-79.html. Some problems ask you to create a 

dance phrase to match a knot or link; that can be as much or more fun than the mathematical 

part of the puzzle! 

 

1. Imagine that a dancer traversing a path on the stage trails behind a string, Fig 1. The dancer 

continues to move and trail the string until reaching the dancer’s starting point P. The dancer is 

careful never to move directly over a crossing point of previously trailed strings such as point C 

by moving slightly to one or the other side of the crossing instead, as indicated by one of the 

solid arrows. In the figure the dancer then proceeds to starting point P by following one of the 

dotted arrows and connects the two ends of the string to create a loop. Is it possible that a loop 

created in this way by a dancer dragging a string might in some cases be a knot (that is NOT the 

unknot)!? Notice that in the figure the fact that earlier strands of the string pass under later 

strands is indicated by the “break” in the underlying string segment. It turns out that the decision 

as to which bold arrow the path takes makes no difference as to whether the loop created in Fig. 

1 is knotted, or which knot it might form. 

 
Figure 1 

 
2. Imagine now that each of a pair of dancers trails a string behind themself as they move through a 

complex floor pattern, never move over a point where two strings already cross, and finally come 

to rest at either their own or their partner’s starting point. Then the string paths will combine to 

take the form of a knot or link. We say that the diagram produced represents a knot or link that is 

duet- or 2-danceable. We might turn the exercise around and ask, “Which knot or 2-link diagrams 

are so danceable by two dancers?” 

 

(A) Explain why every two-crossing knot is solo-danceable - are they all the unknot? Show that 

every two crossing 2-component link is 2-danceable. 

 

(B) Find a three-crossing unknot that is not solo-danceable but is 2-danceable. Perform it with a 

partner. You should have found in problem 1 that solo-danceable knots are always the unknot, but 

this problem asks you to find a diagram of an unknot that is not solo-danceable. Generally, knot 

theorists look for properties of knots that hold for all diagrams of a particular knot, but this shows 

that danceability is NOT one of those properties! 
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 (C) Work in a group of four. Find a highly symmetrical way to dance Solomon’s knot, Fig. 2, so 

that two dancers circle clockwise on one link and two circle counterclockwise on the other link. 

This pattern is called the “Hey for four” in contra dance. 

 
Figure 2 

 

(D) Work in a group of three or four. Find a 3-danceable pattern for the 3 by 3 Celtic knot 

(Appendix A) and develop, rehearse, and perform it. It is sometimes helpful to have one person 

stand out and help direct, which is why a group of four might be helpful. 
 

3. Examine the two diagrams in Fig. 3, which represent the 8-crossing knot that is given the standard 

label 818 in most knot catalogues. 818 is said to be an 8-crossing knot because 8 is the minimal 

number of crossings in any of its planar diagrams; however, an n-crossing knot may have n-

crossing diagrams that look very different! Every knot has a braid diagram like that for 818 shown 

in Fig. 4. We imagine that the two strands labeled P are connected, as are the two labeled Q and 

the two labeled R (without adding additional crossings).  

 

(A) Explain how 818’s braid diagram is generated from its standard diagram on the left (hint: pay 

attention to the three small line segments crossing the knot. 

 

(B) Find the value m such that the 818 diagram is minimally m-danceable: every braid with m 

strands is m-danceable (can you see why?), but is the 818 diagram also 2-danceable? Explain your 

reasoning. Remember to pay attention to the direction in which the dancers travel. 

 

(C) The braid form of 818 also represents the “three-person weave” pattern used in basketball. 

Watch the video clip https://www.youtube.com/watch?v=DEyULvNXBmo at “Warriors Weave,” 

2015, in which the Golden State Warriors NBA basketball team uses the three-person weave and 

explain its relationship to the braid diagram for 818. 

 

(D) In a group of three make up a dance phrase that uses the three-person weave. 
 

 
Figure 3: Knot 818 and its braid form, similar to the three-person weave. 

 

4. For each knot or link drawing in Figures 4 and 5 that you have not yet considered find the minimal 

n such that the drawing is n-danceable in each direction. Choose one or two as the basis for a 

dance phrase. Figure 5 shows diagrams for all prime knots with minimal crossing number less 

than seven; find “string duet-danceability” as defined in the caption for each. 
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Figure 4. Knot and Link Examples 
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Walk a Crooked Path 
by Jaap Scherphuis 

G4G14 exchange gift, March 2020 
 
Below is a 7×7 board with three squares removed. 

 

 
 

You walk a path from square to square (adjacent horizontally or vertically), without visiting any square 
more than once. You may start on any square and end on any square, and do not need to visit every 
square. Find a path that has as many quarter turns as possible, i.e. what is the most crooked path you 
could walk? 
 

    
 

    
 
 
This puzzle and its solution can be found on my web site: 
 

https://www.jaapsch.net/g4g/g4g14.htm 
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A Christmas Card by Leslie E. Shader, circa 1986. 

 

Leslie E. Shader’s Christmas Card 

 

 

Les Shader created this Christmas card puzzle around 1986.  It was originally submitted and 

accepted by GAMES magazine before the magazine stopped production. 

 

Permission is granted to reprint this card for personal use, provided that you leave his name on 

the card. 

 

 If you don’t want to use MERRY CHRISTMAS, you will have the same solution with HAPPY 

TRIANGLES. 

 

Leslie E. Shader  was a G4G1 through G4G11 attendee.    He was a professor of mathematics at 

the University of Wyoming. 

 

Christmas 1980, Les gave his daughter, Soni, a copy of Martin Gardner’s AHA! INSIGHT book. 

 

Soni Shader Huffman introduced this puzzle on the last day of classes before Christmas break to 

her high school students and  taught the counting method found in Martin Gardner’s AHA! 

INSIGHT, pages 9-11.  Students in Geometry, Algebra 2, and advanced courses were able to 

succeed with this puzzle.  She was a G4G 11,12,and 14 attendee.  She was formerly a high school 

math teacher, director of the math tutoring center at Northwestern College of Iowa, and a 

homeschool parent.  She now works for AptarePrep.com.  Her current interests are antique 

advertising puzzles and rattleback spinning toys. 

 

Timothy Huffman is a math and actuarial science professor at Northwestern College of Iowa and 

owns AptarePrep.com.  He was a G4G 12 and 14 attendee.  He currently collects antique 

computational devices. 
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A Christmas Card by Leslie E. Shader, circa 1986. 

 

How do I wish thee a Merry Christmas? 

Let thee count the ways. 

Count the different paths to say “MERRY CHRISTMAS!”  The path may travel UP, DOWN, LEFT, RIGHT, or 

DIAGONAL. 

 

M 

MEM 

MEREM 

MERRREM 

MERRYRREM 

MERRY YRREM 

MERRY C YRREM 

MERRY CHC YRREM 

MERRY CHRHC YRREM 

MERRY CHRIRHC YRREM 

MERRY CHRISIRHC YRREM 

MERRY CHRISTSIRHC YRREM 

MERRY CHRISTMTSIRHC YRREM 

MERRY CHRISTMAMTSIRHC YRREM 

MERRY CHRISTMASAMTSIRHC YRREM 

! 

 
  

PUZZLES | 299

A Christmas Card by Leslie E. Shader, circa 1986. 

 

Leslie Shader’s Christmas Card Solution 

 

This solution uses the counting method from Martin Gardner’s AHA!  INSIGHT, pages 9-11.  While a 

combinatorical solution may be more elegant, I have chosen to use this method because it doesn’t 

require advanced skills and is accessible to high school students. 

The solution matrix has been abbreviated for space, but it is obviously symmetric. 

 

1.  Start by numbering the M’s with a 1. 

2. Proceed with the method from AHA! counting the number of ways to get to E and R. 

3. The difficulty of this puzzle increases because of the double R’s.  A letter R may appear as the 

first R or the second R.  The solution has two numbers listed for the R’s.  The first number is the 

number of ways to arrive at that R as the first R in MERRY.  The second number is the number of 

ways to arrive at that R as the second R in MERRY. 

4. 3 R’s have a second number of 0 because they are not adjacent to a Y. 

5. Proceed with the AHA! method; there are no further complications without more double 

letters. 

 

Beginning of the solution matrix using step 1 

 

  M 

1 

  

 M 

1 

E M 

1 

 

M 

1 

E  E M 

1 

 

 

 

Beginning of the solution matrix using step 2.  Getting to E 

  M 

1 

  

 M 

1 

E 

1+1+1=3 

M 

1 

 

M 

1 

E 

1+1=2 

 E 

1+1=2 

M 

1 

 

  



PUZZLES | 300

A Christmas Card by Leslie E. Shader, circa 1986. 

 

Beginning of the solution matrix using step 2.  Getting to R, as the first R. 

   M 

1 

   

  M 

1 

E 

3 

M 

1 

  

 M 

1 

E 

2 

R 

2+3+2=7 

E 

2 

M 

1 

 

M 

1 

E 

2 

R 

2+2=4 

 R 

2+2=4 

E 

2 

M 

1 

 

Beginning of the solution matrix using step 3.  Getting to R, as the second R. 

    M 

1 

    

   M 

1 

E 

3 

M 

1 

   

  M 

1 

E 

2 

R 

7 

0 

E 

2 

M 

1 

  

 M 

1 

E 

2 

R 

4 

7+4+4+2=17 

R 

4 

2+4+7+4+2=19 

R 

4 

7+4+4+2=17 

E 

2 

M 

1 

 

M 

1 

E 

2 

R 

4 

4+2+4+2=12 

 

R 

2 

4+4+4+2=14 

 R 

2 

4+4+4+2=14 

R 

4 

4+2+4+2=12 

E 

2 

M 

1 

= 
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A Christmas Card by Leslie E. Shader, circa 1986. 

 

Solution matrix, page 1 

         

         

         

         

         

         

        M 

1 

       M 

1 

E 

2 

      M 

1 

E 

2 

R 

4 

12 

     M 

1 

E 

2 

R 

4 

12 

R 

2 

12 

    M 

1 

E 

2 

R 

4 

12 

R 

2 

12 

Y 

36 

   M 

1 

E 

2 

R 

4 

12 

R 

2 

12 

Y 

36 

 

72 

  M 

1 

E 

2 

R 

4 

12 

R 

2 

12 

Y 

36 

 

72 

C 

144 

 M 

1 

E 

2 

R 

4 

12 

R 

2 

12 

Y 

36 

 

72 

C 

144 

H 

288 

M 

1 

E 

2 

R 

4 

0 

R 

2 

10 

Y 

34 

 

70 

C 

142 

H 

286 

R 

574 
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A Christmas Card by Leslie E. Shader, circa 1986. 

 

Solution Matrix, page 2 

     M 

1 

 

    M 

1 

E 

3 

M 

1 

   M 

1 

E 

2 

R 

7 

0 

E 

2 

  M 

1 

E 

2 

R 

4 

17 

R 

4 

19 

R 

4 

17 

 M 

1 

E 

2 

R 

4 

12 

R 

2 

14 

Y 

81 

R 

2 

14 

M 

1 

E 

2 

R 

4 

12 

R 

2 

12 

Y 

38 

 

157 

Y 

38 

E 

2 

R 

4 

12 

R 

2 

12 

Y 

36 

 

74 

C 

305 

 

 

74 

R 

4 

12 

R 

2 

12 

Y 

36 

 

72 

C 

146 

H 

597 

 

C 

146 

R 

2 

12 

Y 

36 

 

72 

C 

144 

H 

290 

 

R 

1177 

H 

290 

Y 

36 

 

72 

C 

144 

H 

288 

R 

578 

I 

2333 

R 

578 

 

72 

C 

144 

H 

288 

R 

576 

I 

1154 

S 

4641 

I 

1154 

C 

144 

H 

288 

R 

576 

 

I 

1152 

S 

2306 

T 

9253 

S 

2306 

H 

288 

R 

576 

I 

1152 

S 

2304 

T 

4610 

M 

18473 

T 

4610 

R 

576 

I 

1152 

S 

2304 

T 

4608 

M 

9218 

A 

36909 

M 

9218 

I 

1150 

S 

2302 

T 

4606 

M 

9214 

A 

18432 

 

S 

73773 

 

A 

18432 
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Martin Gardner would sometimes wrap puzzles inside stories he 
concocted, such as with the book “The Numerology of Dr. Matrix.” The 
following puts my favorite puzzle in that tradition: 
 
 

The Accountant 

by Barney Sperlin 

Richard rapped on the Captain's door and heard a faint welcome from inside. He swung it open 

to find his boss looking up from behind stacks of papers and file folders. The small office reminded 

him of a university faculty suite, rather than a police precinct. 

 Richard shut the door quickly and strode up to the front of the desk. “I think we're in, sir!” 

 Captain Marlow frowned from behind his half-rim glasses. He glanced at the thin, bookish 

appearance of this new addition to his team. “You sold it?” 

 Richard thought the squeaking and cracking he heard could have come from the chief’s chair or 

the elderly man's back. “Is this my future?” he wondered. Was the Captain 80? 90? Well, everyone 

over 50 looked the same. 

 “Bought the whole act!” smiled Richard. “It looks like I get into the guts of their racket by the 

end of this week. My interview knocked ‘em out!” 

 Marlow grunted quietly. “Grab that chair. You're from Cranbury, right?” 

 “Graduated last May and joined their task force in June. They said you needed someone down 

here who could handle numbers.” He talked as he noisily slid the chair over the bumpy floorboards, 

and sat. “This operation’s going to be smooth and clean.” 

 “Well, kid, that crime family you're getting embedded into ain't clean.” Marlow leaned back. 

“Tell me how you did it.” 

 “They gave me a test and I convinced them that I was really good with numbers, so I should be 

starting as an apprentice accountant sometime soon.” 

 “A test? What kind of a test? I always hated tests.” 
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 “It was strange. Sergio, a lieutenant of the Antipasto family, put four blue velvet bags on the 

desk in a line in front of him. They were small and had a gold-colored tie at the top of each. 

 Richard continued. “He said 'Boy, how many jewels in each bag?' Well, I shrugged 'cause I 

couldn't see into the bags. But I knew he was interested in my math abilities, so I asked him, 'Are there 

a hundred jewels altogether?'” 

“Less,” he said. 

 Marlow, who was always impressed with people who could do math, though he never tried to 

learn it himself, asked, “And that's when you told him how many were in each bag.” 

 “Well, no. I kept whittling the total down: 50, 20, 18. Each time he said, 'Less.' Finally, he spit 

out, 'Enough of this crap.' It was gross. He really did spit! Anyway, then I asked him if all the bags had 

the same number of jewels, and he said, 'No, they’re all different.'” 

 Marlow nodded and muttered, “And that's when you told him how many were in each.” 

 “Well, no, it was still too hard a problem, so I asked if I could write down some stuff. He 

agreed, and I did some calculating on a pad I always carry. I asked, ‘if you tell me what the four 

numbers multiplied together were, would it help?’ He scribbled on his desk calendar for a short time, 

and said ‘no’ and then laughed, telling me the product anyway.” 

 “And that's when you ...” 

 “That would’ve been cool, but no. I had one more question and I was nervous. He had to 

answer it.” 

 “You asked him where the bathroom was.” 

 “I may have been getting close, but I asked if there was more than one jewel in the bag with the 

least.” 

 “And he said?” 

 “Well, as soon as he answered my question, I told him how many were in each and he told me I 

could start Friday.” 
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 “Good, good.” Marlow leaned forward and put his elbows on the desk. “I knew you were the 

man for the job. By the way, how many were in each?” 

 Richard leaned forward, as Marlow had, but with an infuriating smirk. “I've told you everything 

you need to know. You can figure it out. But, there IS something I don't know.” 

 Marlow raised his eyebrows without saying anything, resting his chin on his hands. 

 Richard's grin faded. “Was there ever really anything in those bags, or was it all hypothetical? 

Maybe I ought to break into Sergio's office when I'm there and check 'em out.” 

 Marlow erupted out of his chair and leaned toward Richard. “The hell! You’ll get killed. You 

stick to accounting. That'll give us all we need.” 

 Richard's eyes drifted toward the ceiling and his face became blank. “I'll need to pick the locks 

on the doors and desks, and then break the combination on the safe. And a jetpack on the roof in case I 

gotta’ get out fast. And ...” 

 Marlow sat back down, grabbed the phone and punched the button for his secretary. “Another 

James Bond wannabe. Lock picking. Ha! Safe cracking. Ha! Ada, get Richard Feynman’s file. He’s 

fired! And, let’s talk to that Gardner guy.” 

- - - - - - - - -  

 Inspired by: The Scientific American book of Mathematical Puzzles and Diversions, Martin 
Gardner, Simon and Schuster, 1959, p. 114 
 

- - - - - - - - - - 

Hints 

 You’ll need to write down all the possibilities, including their products. Not as hard as 

you might think. 

 Note that Richard couldn’t identify the 4 digits even when he heard the product, so 

eliminate number combinations which gave a product only existing for the one combination. 

 Of those remaining, his final question allowed him to answer, even though we don’t 
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know what Sergio said. If Richard still couldn’t have answered at that point, there would have 

had to have been more questions. 
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The Martian Mayor Problem 
T. Arthur Terlep, Purdue University 

taterlep@gmail.com 

G4G14 

 
Mayor Martin Martian oversees the contract bids for the design of the huge square module used in the large-scale 
colonization effort which will tile the Martian landscape. Contractors decide the layout and speed of bidirectional 
trolley paths and the location of the command center, which must all be constructed the same inside every module. 

Assume that all trolley intersections are seamless interchanges. Two engineering firms have already submitted 
designs for the contract (for the sake of example). On the left of each sample is the module design with the travel 

time along each trolley segment. On the right is the Timing Table. These measure the minimum travel time in hours 
between the top left module and the other modules. All paths must start and stop on a command center, but do not 
need to visit intermediate command centers along the way. Each module has two connecting tunnels which permit 

ONLY a single trolley path. Paths may NOT bridge over each other. 

 

   
Additionally, a recent Psychophysics research shows humans prefer more “Euclidean travel times” so there is a $1 
million bonus for each Tier above 0 achieved in the final design. Each Tier is shown in the Timing Tables below. 

There is no limit on the number or speed of trolley paths inside the module. 
 

 … 
You work for a contracting company submitting a bid. 

1. What is the module design for the best Tier you can achieve with a single tunnel between modules?  
 
Unhappy with progress, the city council has intervened and allowed for two tunnels between adjoining modules.  

2. What is the module design for the best Tier you can achieve with two parallel tunnels between adjoining 
modules? Three or more parallel tunnels?  
3. What is the relationship between the number of tunnels and the highest achievable Tier?  
 
A SparceV lobbyist campaigns to allow trolley paths inside the module to bridge over each other (Non-planar paths) 

4. What has the lobbyist discovered? What is the module design of the best Tier for 1, 2, and 3 tunnels?  
 
Big brain company Goobr has proposed some alternative shapes and the city council is changing the design again… 

5. What do these modules look like for other tiling shapes (triangles, hexagons, and irregular tiles)?  
 

Please send your solutions to Art Terlep, taterlep@gmail.com 
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Solving Rep-tile by Computers: Performance of Solvers and

Analyses of Solutions

Mutsunori Banbara∗ Kenji Hashimoto∗ Takashi Horiyama† Shin-ichi Minato‡

Kakeru Nakamura§ Masaaki Nishino¶ Masahiko Sakai∗ Ryuhei Uehara§

Yushi Uno‖ Norihito Yasuda¶

October 12, 2021

Abstract

A rep-tile is a polygon that can be dissected into smaller copies (of the same size) of the original
polygon. A polyomino is a polygon that is formed by joining one or more unit squares edge to
edge. These two notions were first introduced and investigated by Solomon W. Golomb in the 1950s
and popularized by Martin Gardner in the 1960s. Since then, dozens of studies have been made in
communities of recreational mathematics and puzzles. In this study, we first focus on the specific
rep-tiles that have been investigated in these communities. Since the notion of rep-tiles is so simple
that can be formulated mathematically in a natural way, we can apply a representative puzzle solver,
a MIP solver, and SAT-based solvers for solving the rep-tile problem in common. In comparing
their performance, we can conclude that the puzzle solver is the weakest while the SAT-based solvers
are the strongest in the context of simple puzzle solving. We then turn to analyses of the specific
rep-tiles. Using some properties of the rep-tile patterns found by a solver, we can complete analyses
of specific rep-tiles up to certain sizes. That is, up to certain sizes, we can determine the existence
of solutions, clarify the number of the solutions, or we can enumerate all the solutions for each size.
In the last case, we find new series of solutions for the rep-tiles which have never been found in the
communities.

1 Introduction

In some games like Tetris, polygons obtained by joining unit squares edge to edge are used as their pieces.
These polygons are called polyominoes, and they have been used in popular puzzles since at least 1907.
Solomon W. Golomb introduced the name polyomino in 1953 and was widely investigated [1]. It was
popularized in the 1960s by the famous column in Scientific American written by Martin Gardner [2].

Figure 1: An example of a rep-tile of rep-4.

Golomb is also known as an inventor of the notion of rep-tile. A polygon P is called rep-tile if it
can be dissected into smaller copies of P . Especially, if P can be dissected into n copies, it is said to
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†Hokkaido University, Japan. horiyama@ist.hokudai.ac.jp
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be rep-n. An example of a rep-tile of rep-4 is given in Figure 1. We can observe that each of 4 copies
can be dissected into 4 smaller copies, which give us rep-16. That is, a rep-tile of rep-n is also rep-ni for
any positive integer i = 1, 2, . . .. We also extend the rep-tile of rep-n by tiling n copies to make a larger
pattern. That is, we can tile the plane by repeating this process. It is known that some rep-tile can be
used to generate acyclic tiling (i.e., the tiling pattern cannot be identical by shifting and rotation). Both
cyclic and acyclic tilings have been well investigated since they have applications to chemistry, especially,
crystallography [3]. From the viewpoints of mathematics and art, the notion of rep-tile is popular as we
can obtain tiling of the plane with the same shapes of different sizes by replacing a part of the rep-tiles
by their copies recursively.

Figure 2: The 6-ominoes of stair-shape, J-shape, and F-shape

Gardner introduced the polyomino rep-tiles in [3]. Precisely, he introduced three 6-ominoes (poly-
ominoes formed by 6 unit squares) in Figure 2 as rep-tiles of rep-144. When the article [3] was written,
the minimum number of dissections for these three rep-tiles was conjectured as 144. Namely, they are
the rep-tiles of rep-144, and not rep-k for any 1 < k < 144. However, they have been found out that the
left stair-shape is a rep-tile of rep-121, the central J-shape is a rep-tile of rep-36, and the right F-shape
is a rep-tile of rep-64 [3, 4].

Polyomino rep-tiles have a long history mainly in the contexts of puzzles and recreational mathemat-
ics. They have been investigated since the 1950s, however, they have relied on discoveries by hand. In
fact, there are many constructive solutions for these puzzles on the web page [4] However, these puzzles
have not yet “solved” in the strict sense since any nonexistent results for these cases have not yet be
given.

In this research, we first experiment on these three polyominoes in Figure 2 and check if they are
rep-n for each n by the representative approaches by a computer. Since the notion of a rep-tile is a quite
simple puzzle, we can represent the conditions of a rep-tile in several different natural ways in the terms
of representative problem solvers. Therefore, we can compare the performance of the different problem
solvers using such a simple puzzle as a common problem. We use the following three different approaches
to solving the rep-tiles by a computer.

Puzzle solver and implementation based on dancing links: Nowadays, most puzzle designers use
a free puzzle solver. It is based on a data structure called dancing links proposed by Knuth. It is
said that dancing links is the data structure that allows us to perform backtracking efficiently, and
hence it is suitable to analyze puzzles. Although we do not know the details of the implementation
of the free puzzle solver, we also independently implemented two algorithms; one uses dancing
links, and the other uses dancing links with ZDD to make it faster.

MIP solver: When we formalize the solutions of a rep-tile by constraint integer programming, we can
solve it by mixed integer programming (MIP) solvers. The conditions of a rep-tile can be formalized
in a relatively simple integer programming (IP), and we can decide if the rep-tile has a solution if
and only if the corresponding instance in the form of the IP is feasible. Since each feasible solution
corresponds to a solution, the number of feasible solutions also gives the number of solutions of
the rep-tile. In this formulation, the feasibility is the issue and hence the optimization term in the
MIP solver is redundant.

SAT-based solver: Most instances of the integer programming can be solved by SAT-based solvers
with some modifications of constraints. It is the case for the conditions of a rep-tile, and hence the
IP formulation can be translated to the constraints of the SAT-based solvers.

In summary, the puzzle solver and programs based on dancing links, even if we use ZDD, cannot solve
rep-tiles of rep-n for large n. However, this fact does not mean the limit of using a computer. The MIP
solver can solve rep-tiles of rep-n for larger n than the puzzle solvers. Moreover, we found out that the
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k 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0 0 0 32858262881295138816

1 0 0 0 0 262144 0 0 0 0 0

1 0 0 0 0 0 0 1358954496 51539607552 0 0

k 12 13 14 15 16

7513742553498633531870412820 421105971327597731222250323968 0 0 0

545409716939029673955819520 0 0 0 0

693242756013012824879005696 3658830332096120778961977344 0 > 0 > 0

k 17 18 19 20 21 22 23 24 25

0 0 ? ? ? ? > 0 > 0 > 0

0 > 0 0 0 0 0 0 > 0 0

> 0 ? > 0 > 0 > 0 ? > 0 > 0 > 0

Table 1: The number of distinct dissections of k2-omino rep-tiles, where each number indicates the
number of solutions, where 0 means no solution, > 0 means at least one solution, and ? means unknown.

SAT-based solvers can solve much larger sizes than the MIP solver. These results were contrary to our
expectations.

By using a model counting method with a SAT-based solver, we succeeded to count the number of
solutions of rep-tiles of certain sizes, which are bigger than the previously known results. Our results are
summarized in Table 1. (As we will describe later, there exist n-omino rep-tiles only when n = k2 for
some positive integer k. Therefore, we will consider k2-omino rep-tiles for k = 1, 2, . . ..)

By examining in detail the number of solutions and the specific individual solutions, we obtain two
major new results regarding rep-tiles.

Each 0 in Table 1 indicates that there is no rep-tile of rep-k2 for the corresponding 6-omino. Since the
previously known results of rep-tiles only indicate the existence of a solution constructively, it remains
open whether there is a solution for other sizes. In this paper, we show for the first time that there is no
solution up to a certain size. It was conjectured that these three rep-tiles of rep-144 were the minimum
size in [3], and then gradually, smaller solutions were shown constructively. However, it has never been
proved that they are the minimum number. Our results in Table 1 reveal for the first time that they are
all the minimum rep-tiles. They put an end to the history of exploration of these rep-tiles for more than
50 years.

As for the size in which solutions exist, we succeed in completely characterizing some of the solutions
by analyzing the number of solutions and patterns of these solutions. They contain whole new types
of solutions that are not included in previously known constructive solutions. We also succeed in con-
structing solutions with completely different characteristics from the known solutions by combining a
constructive method and a search using these new types of solutions as clues. By developing these new
types of solutions, it may be possible to find completely new solutions even for sizes that are previously
expected to have no solution.

2 Preliminaries

A polyomino is a simple polygon that can be obtained by joining unit squares edge by edge. All polygons
in this paper are polyominoes. For an integer s, a polyomino of area s is called an s-omino. A simple
polygon P is a rep-tile of rep-n if P can be dissected into n congruent polygons similar to P .

In this paper, we focus on polyomino rep-tiles. Then the following theorem is important.

Theorem 1 When a polyomino P is a rep-tile of rep-n, n is a square number. That is, there exists a

natural number k such that n = k2.
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Proof Let P be a t-omino. That is, P consists of t unit squares. By assumption, P can be dissected
to n copies of P ′, where P ′ is similar to P . Then, since a unit square has an edge of length 1, the
corresponding square of P ′ has an edge of length 1/

√
n. Let � be the length of a shortest edge e of the

polyomino P . Then, � is an integer and � should be a multiple of 1/
√
n since this edge e is formed by

tiling P ′. Therefore,
√
n should be an integer, and hence n is a square number.

By Theorem 1, a polyomino P cannot be a rep-tile of rep-n when n is not a square number. Therefore,
we assume that n = k2 for some positive integer k without loss of generality. In order to compare to the
previous results, we focus on the three 6-ominoes shown in Figure 2 in this paper. We call each of them
stair-shape, J-shape, and F-shape, respectively.

Among these three 6-ominoes, the J-shape and the F-shape are concave, and hence the concave part
should be filled by the other piece to construct a rep-tile. Precisely, a polyomino P is concave if there
exists a unit square not belonging to P but it shares three edges with P . We call this square concave

square of P .
In this research, we solve the polyomino rep-tile problem for the three 6-ominoes by some problem

solvers. When we use MIP solver or SAT-based solvers, we have to describe the constraints of the rep-tile
problem. Here we give the common way for the representation.

As a simple example, we consider a domino (or 2-omino) P of rep-4. In this case, since 4 = 22 is the
square number of k = 2, we consider P as an 8-omino of size 4× 2 by scaling 2 and fill P by 4 dominoes

of size 2 × 1. We first assign a unique number to each unit square of P . We let
0 1 2 3
4 5 6 7

for

example. When we tile 4 dominoes on the 8-omino P , a binary variable A(i, j) using the numbers of unit
squares indicates a way of each domino. To make the representation unique, we assume that i < j. For
example, when A(0, 1) = 1, it means that a domino covers the unit squares 0 and 1. For this P , we use
10 binary variables (A(0, 1), A(1, 2), A(2, 3), A(4, 5), A(5, 6), A(6, 7), A(0, 4), A(1, 5), A(2, 6), A(3, 7))
to represent if a domino covers the corresponding unit squares.

Next, we introduce constraints for each unit square. Precisely, since each unit square i should be
covered by just one domino, we have the following constraints.

Constraint for the square 0 : A(0, 1) +A(0, 4) = 1

Constraint for the square 1 : A(0, 1) +A(1, 2) +A(1, 5) = 1

Constraint for the square 2 : A(1, 2) +A(2, 3) +A(2, 6) = 1

Constraint for the square 3 : A(2, 3) +A(3, 7) = 1

Constraint for the square 4 : A(4, 5) +A(0, 4) = 1

Constraint for the square 5 : A(4, 5) +A(5, 6) +A(1, 5) = 1

Constraint for the square 6 : A(5, 6) +A(6, 7) +A(2, 6) = 1

Constraint for the square 7 : A(6, 7) +A(3, 7) = 1

It is clear that P is a rep-tile of rep-4 if and only if there is a solution that satisfies these eight constraints.
In this paper, we wrote programs that generate the declarations of the binary variables and the

corresponding constraints for each combination of 6-ominoes stair-shape, J-shape, or F-shape, and a
square number n = k2.

3 Comparisons of Solvers

As representative problem solvers, we chose BurrTools as a puzzle solver, SCIP as a MIP solver, and
clingo and NaPS as SAT-based solvers. For each of the three rep-tiles, we list their running time for
solving the rep-tile. The details and resources of the solvers follow them. Tables 2, 3, 4 summarize
the running times of solvers for each rep-tile. In the tables, DLX indicates the algorithm based on
dancing links, DLZ indicates the algorithm based on dancing links with ZDD, which are implemented
by ourselves to compare with BurrTools. We omit the cases k < 6 since they are too short, and each
number represents seconds. The symbol ? means timeout in this case. We set the time limit for each
solver as 10 minutes (600 seconds) in DLX/DLZ, 12 hours (43200 seconds) in clingo, and 2 days (172800
seconds) in NaPS. The entry OF in DLZ means “overflow of cache”. After each k, we put �, ×, and
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? which mean “there exists a solution”, “there exists no solution”, and “we do not know if there is a
solution or not,” respectively.

k (Solution?) 6(×) 7(×) 8(×) 9(×) 10(×) 11(�) 12(�) 13(�) 14(×) 15(×)
BurrTools 0.6.3 < 1 2 5760 ? ? ? ? ? ? ?

DLX(1st solution) < 1 15 ? ? ? ? < 1 ? ? ?
DLX(all solutions) ? ? ? ? ? ? ? ? ? ?
DLZ(1st solution) < 1 < 1 < 1 391 OF OF < 1 OF OF OF
DLZ(all solutions) ? ? ? ? ? ? OF OF ? ?

SCIP 7.0.2 1 1 1 1 56 42 7 120 ? ?
clingo 5.4.0 < 1 < 1 < 1 < 1 < 1 1 2 2 8 ?
NaPS 1.02b2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1 17 6388

k (Solution?) 16(×) 17(×) 18(×) 19(?) 20(?) 21(?) 22(?) 23(�) 24(�) 25(�)
clingo 5.4.0 ? 2946 ? ? ? ? ? 8911 26973 ?
NaPS 1.02b2 (421700) 1163 12530 ? ? ? ? 529 1415 1744

Table 2: Time (sec.) for deciding if is a rep-tile of rep-k2 (NaPS finishes its computation after

the time limit when k = 16)

k (Solution?) 6(�) 7(×) 8(×) 9(×) 10(×) 11(×) 12(�) 13(×) 14(×) 15(×)
BurrTools 0.6.3 6 < 1 < 1 ? ? ? ? ? ? ?

DLX(1st solution) < 1 < 1 ? ? ? ? < 1 ? ? ?
DLX(all solutions) < 1 ? ? ? ? ? ? ? ? ?
DLZ(1st solution) < 1 < 1 < 1 < 1 < 1 241 < 1 146 OF OF
DLZ(all solutions) < 1 ? ? ? ? ? 6 ? ? ?

SCIP 7.0.2 1 1 1 5 9 14 69 4 6 19800
clingo 5.4.0 < 1 < 1 < 1 1 2 5 4 2 4 5
NaPS 1.02b2 < 1 < 1 < 1 < 1 1 2 2 7 52 116

k (Solution?) 16(×) 17(×) 18(�) 19(×) 20(×) 21(×) 22(×) 23(×) 24(�) 25(×)
clingo 5.4.0 6 11 9 5336 41489 ? ? ? 1454 ?
NaPS 1.02b2 208 282 113 1531 116400 ? ? ? 1675 ?

Table 3: Time (sec.) for deciding if is a rep-tile of rep-k2

Comparing to the DLX based on just dancing links, BurrTools implements some more tricks. The
DLZ, which uses not only dancing links but also ZDD, performs more efficiently than DLX, however,
it causes memory overflow when the search space becomes larger. Comparing to the algorithms based
on dancing links, the MIP solver SCIP can deal with a larger scale. We note that we do not need the
optimization function of the MIP solver in rep-tile. When we use SAT-based solvers clingo and NaPS,
the range that can handle is much wider than the other problem solvers.

The details of each experiment are described below, however, there are differences in resources de-
pending on problem solvers. This is because the authors split up to perform experiments that was good
at each tool. The difference in computation results due to the difference in resources is considered to be
tens to hundreds of times, however, considering the scale of the problem that increases exponentially and
the actual computation results in Tables 2, 3, and 4, it can be seen that the differences of these constant
factors do not affect our conclusion. The following are the details for each experimental environment.

3.1 Puzzle solvers

BurrTools 0.6.31 is widely recognized as the standard puzzle solver in the puzzle society. It supports
a variety of grids and also supports 2D and 3D for puzzles that ask to pack a given set of pieces into

1http://burrtools.sourceforge.net/
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k (Solution?) 6(×) 7(×) 8(�) 9(�) 10(×) 11(×) 12(�) 13(�) 14(×) 15(�)
BurrTools 0.6.3 < 1 960 172800 ? ? ? ? ? ? ?

DLX(1st solution) < 1 < 1 < 1 < 1 ? ? < 1 ? ? ?
DLX(all solutions) ? ? ? ? ? ? ? ? ? ?
DLZ(1st solution) < 1 < 1 < 1 < 1 < 1 102 < 1 20 ? ?
DLZ(all solutions) ? ? < 1 < 1 ? ? OF OF ? ?

SCIP 7.0.2 1 2 43 13 11 259200 ? ? ? ?
clingo 5.4.0 < 1 < 1 < 1 1 3 4 11 37 97 372
NaPS 1.02b2 < 1 < 1 < 1 < 1 2 3 10 14 671 688

k (Solution?) 16(�) 17(�) 18(?) 19(�) 20(�) 21(�) 22(?) 23(�) 24(�) 25(�)
clingo 5.4.0 244 134 ? 18022 6498 ? ? ? ? ?
NaPS 1.02b2 316 505 ? 7455 6249 8485 ? 47550 131900 146200

Table 4: Time (sec.) for deciding if is a rep-tile of rep-k2

a given frame (without overlapping or gaps). According to the web page of BurrTools, it is based on
the data structure dancing links proposed by Knuth, who wrote a 270-page textbook [5]. Dancing links
is a data structure for efficiently performing backtracking in a tree search by depth-first search. In the
literature [5], many examples are taken from famous puzzles as applications of backtracking in search
trees. In fact, the polyomino packing puzzle, which is essentially the same as the rep-tile, is also taken
up in detail as an example. In our experiments, the machine used has an Intel Core i5-7300U (2.60GHz)
CPU and 8GB of RAM. It is the limit of analysis for k = 8, namely, the rep-tile of rep-64 in each pattern.

BurrTools does various tunings internally, however, the details are not public. For comparison, we
first implemented using dancing links as they are. The machine used has a CPU of Ryzen 7 5800X
(3.8GHz) and 64GB of RAM. The C program for the experiment used DLX12 developed by Knuth.
When using DLX1, it turns out that k = 12 is the limit in terms of finding a solution, and k = 6 is
difficult in terms of finding all solutions. Next, we tried to speed up the search by combining dancing links
with ZDD. The C program for the experiment used DLX63 developed by Knuth. The word ZDD is an
abbreviation for Zero-suppressed Binary Decision Diagram, and it is a data structure that shares subtree
structures that appear in common in the binary decision tree. In particular, the memory efficiency is
further improved compared to the normal BDD by not maintaining the path when the result becomes 0
(see [7] for details). If ZDD is used in a tree search like our problem, since it is not necessary to repeatedly
search the already searched subtree, a significant speedup can be expected. On the other hand, it is
necessary to store all the subtrees once searched in the cache, and hence the memory efficiency is worse
than the depth-first search tree. By speeding up using ZDD, it is possible to achieve up to k = 13 in the
sense of finding a solution, and k = 9 for the F-shape and k = 12 for the J-shape in the sense of finding
all the solutions. However, when the scale was larger than that, the search could not be completed due
to lack of memory.

3.2 MIP solver

As the MIP solver, SCIP 7.0.2 4 was used in this research. The way of modeling is as introduced in
Section 2. SCIP requires a term for optimization, however, it is redundant in our model. Hence, we
minimize the sum of binary variables as a dummy. Whenever it is feasible, the result comes to n = k2,
so it acts as a double check for the feasible solution.

The machine used in the experiment has an Intel Core i5-7300U (2.60GHz) CPU and 8GB of RAM.
Although the results a bit vary, it can be seen that the solvable range is wider than when BurrTools is
used.

2See https://www-cs-faculty.stanford.edu/~knuth/programs.html and

https://www-cs-faculty.stanford.edu/~knuth/programs/dlx1.w for the details.
3https://www-cs-faculty.stanford.edu/~knuth/programs/dlx6.w
4https://www.scipopt.org/
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3.3 SAT-based solvers

Some SAT-based solvers support Pseudo Boolean Constraints (PBs) (see [6] for details). All the con-
straints used in the above MIP solver are within the range of PB except for the optimization term. Here,
the optimization term in the MIP solver was redundant information when finding solutions of the rep
tile. Therefore, when the optimization term is deleted from the constraint descriptions used in the above
MIP solver, it can be solved by the SAT-based solvers that can handle PBs as they are.

In this research, we used two typical SAT-based solvers for deciding satisfiability; clingo 5.4.0 5

and NaPS 1.02b2 6. The machine used to run clingo has an Intel Core i7 (3.2GHz) CPU and 64GB
of memory, and the machine used to run NaPS has a Core i3 (3.8GHz) CPU and 64GB of memory.
Each computation time corresponds to the time for finding the first solution in the other solvers. Even
considering the differences among the execution environments, it can be concluded that the range that
can be solved by the SAT-based solvers is dramatically expanded compared to the puzzle solver and the
MIP solver.

3.4 How to count the number of solutions

From the experiments, it was found that the best method for determining the existence of the solution
is to use the SAT-based solvers. The SAT-based solvers used in Section 3.3 have the function of finding
all solutions in addition to determining whether or not it is satisfiable. However, it is not practical since
it will take time due to the large number of solutions. On the other hand, the projected model counting
solver GPMC7 cannot find a solution for given constraints in CNF, however, the number of solutions
can be found at high speed.

Therefore, in order to compute the number of solutions, we first determine the satisfiability using
NaPS, next convert the constraints described in PB to the CNF using the conversion function of NaPS if
it is satisfiable. Then the number of models was counted by GPMC. (To be more precise, when PBs are
converted to CNF, variables other than the binary variable of interest are also generated. Therefore, the
GPMC projection model counting function is used to count only the number of satisfiable assignments
to the variable of interest. We can count the number of satisfiable solutions by this way.)

Table 1 summarizes the number of solutions obtained by combining NaPS and GPMC in this way.
The entry written as > 0 in the table is the entry confirmed that the solution exists using NaPS, and
the entry that specifically describes the number of solutions is the entry that was successfully counted
by GPMC. The ? mark indicates that any solution could not be found after running NaPS for 2 days.
Here, for the k = 16 in stair-shape, a solution was found when the time limit was exceeded.

4 Analysis and New Solutions

As shown in Section 3, through this research, we were able to compute the number of solutions of rep-
tile solutions up to a previously unknown size. Specifically, in each case, the existence of solutions was
determined by NaPS, and the number of solutions was counted by GPMC. However, although the total
number of solutions can be found with this method, the details of the solutions are not clear. In this
section, we observe the solutions by NaPS and the number of solutions by GPMC, referring to the known
results, and clarify the details of solutions for some k. As a result, we find new solutions that were not
included in the known results at all. We will look at this in detail for each 6-omino.

4.1 J-shape 6-omino

The following property is useful for analysis of J-shape 6-omino (hereafter, we assume k > 1 to simplify):

Lemma 2 Let k be an integer such that J-shape 6-omino is a rep-tile of rep-k2. Then k2 is an even

number and any tiling by k2 copies of J-shape can be dissected into k2/2 12-ominoes such that they

consist of and (or their mirror images).

5https://potassco.org/clingo/
6https://www.trs.cm.is.nagoya-u.ac.jp/projects/NaPS/
7https://www.trs.cm.is.nagoya-u.ac.jp/projects/PMC/
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Proof A J-shape piece P is concave. That is, it has a unit square not belonging to P but sharing three

edges of P . To cover this unit square by the other J-shape, we have only two ways shown above. This

implies the lemma.

We obtain a corollary by Lemma 2.

Corollary 3 For any odd number n > 1, a J-shape 6-omino is not a rep-tile of rep-n. Therefore, for

any odd number k > 1, a J-shape 6-omino is not a rep-tile of rep-k2.

By Theorem 1 and Corollary 3, it is sufficient to check whether a J-shape 6-omino is a rep-tile of rep-k2

only for even k. Moreover, by Lemma 2, we can decide if a J-shape 6-omino is a rep-tile by checking

of tiling using only two 12-omino pieces and . Using this method, we can complete

the computation for k larger than the experiments in Section 3. By combining the arguments with the
results in Section 3, we obtain the following theorem for the J-shape 6-omino:

Figure 3: Construction of tiling based
on rectangles of size 3× 4 for k = 6

Figure 4: Part of construction of tiling based on
rectangles of size 3× 4 for k = 12

Theorem 4 For a rep-tile of the J-shape 6-omino of rep-k2, we have the following:
(0) There exists no rep-tile of rep-k2 for an odd number k (except k = 1). There exists no rep-tile of
rep-k2 for k = 2, 4, 8, 10, 14, 16, 20, 22.
(1) Case k = 6: All solutions can be obtained by the following way: We first dissect the 216-omino P

into 18 rectangles of size 3 × 4 as shown in Figure 3 and then replace each rectangle by or its

mirror image.
(2) Case k = 12: All solutions can be obtained by the following way: We first dissect the 864-omino P

into 72 rectangles of size 3× 4 and then replace each rectangle by or its mirror image.

(3) Case k = 18, 24: There are some solutions that contain both and .

Proof (0) We can obtain the results for odd k by Corollary 3. The search results by SAT-based solvers
in Table 3 give us the results for k ≤ 20. By Lemma 2, we perform the search of tiling by copies of two
12-ominoes for larger k. Using NaPS, we confirmed that there is no rep-tile of rep-k2 for k = 22.
(1) Case k = 6: The known solutions for the J-shape 6-omino on the web page [4] are based on the

arrangement of the rectangle . In fact, when k = 6, the pattern in which 18 rectangles are

arranged (Figure 3) is shown on the web page. There are two ways to dissect each rectangle to a pair

of two copies of the J-shape 6-omino; or its mirror image. When k = 6, the number 262144 of

solutions matches 218 = 262144. That is, in the case of k = 6, there are at least 218 solutions based on

8
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the dissection into the rectangles in Figure 3, which is equal to the number of solutions actually counted
by GPMC. Since they match, we can guarantee that no other solution exists.
(2) When k = 12, the number of solutions is 545409716939029673955819520. This number is much larger
than 272, which is obtained by the same dissection of the case k = 6. The reason can be expressed as
follows. We first consider a square corresponding to the unit square of the J-shape polyomino P . In the
rep-tile for k = 12, the square is of size 12 × 12. Then we can tile this square by tiling 12 rectangles of
size 3×4 in vertical or horizontal. (We note that we have no such a choice in Figure 3, and the dissection
is uniquely determined.) Therefore, we have to consider the number of ways of tiling of rectangles in
vertical or horizontal. Moreover, when we consider a large rectangle obtained by joining these squares
of size 12 × 12, there are variants of tiling of rectangles of size 3 × 4. A concrete example is shown in
Figure 4. In this example, the rectangle of size 12 × 24 in P is dissected into rectangles of size 12 × 3,
12× 12, and 12× 9. It is not easy to count the number of distinct dissections of P into rectangles of size
3 × 4. Therefore, we first count the number of dissections of P for k = 12 into rectangles of size 3 × 4
(and 4 × 3) by GPMC, which finishes soon. As a result, the number of ways of dissections is 115495.
Here, we can confirm that 545409716939029673955819520 = 115495 × 272. Therefore, every rep-tile for
k = 12 can be obtained by two steps; first, dissect P into rectangles of size 3 × 4 and 4 × 3, and then

replace each of them by or its mirror image.

Figure 5: A rep-tile of rep-182 of J-shape 6-omino

that contains

Figure 6: A rep-tile of rep-242 of J-shape 6-omino

that contains

(3) By Lemma 2, we can decide if there is a solution that uses in a tiling by J-shape 6-omino by

searching using two types of 12-ominoes. Moreover, when we specify the range of the number of copies

of each of two 12-ominoes, we can decide if there is a solution that contains both and .

As a result, we found that there were such solutions for k = 18, 24; see Figure 5 and Figure 6.

We note that the solutions that contain are new solutions not included in previously known

results. So far, in the case k = 18, there are solutions that contain x copies of for every even

number x from 2 to 46. There is no such solution when x ≥ 47. That is, all solutions containing

we found have even number of pairs of this form. It is not known the details for k = 18: For example,

9
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the number of solutions in the case k = 18, whether there exists a solution that contains an odd number

copies of , and how many solutions that contain are not known. We conjecture that

there are solutions that contain for k > 24.

4.2 F-shape 6-omino

The known rep-tiles of the F-shape 6-omino are a bit complicated, however, the solutions posted on
the web page [4] are explained as follows: We first combine two copies of the F-shape 6-omino to form

, , and , then next arrange them appropriately, and finally place one copy of

the F-shape 6-omino if necessary. In this placement, is a rectangle, hence replacing it with its

mirror image gives us many distinct solutions.
We summarize our results in the following theorem. Among them, we found new types of solutions

that cannot be explained in the way of previously known results for k = 8, 15, 16, 17.

Theorem 5 For a rep-tile of the F-shape 6-omino of rep-k2, we have the following:
(0) There exists no rep-tile of rep-k2 for k = 2, 3, 4, 5, 6, 7, 10, 11, 14.
(1) Case k = 8: All solutions can be obtained by the following way: We first dissect the 384-omino P in

one of the ways shown in Figure 7, and then replace each rectangle by or its mirror image.

(2) Case k = 9: All solutions can be obtained by the following way: We first dissect the 486-omino P in

one of the ways shown in Figure 8 and Figure 9 and then replace each rectangle by or its mirror

image.
(3) Case k = 12, 13, 19, 20, 21, 23, 24, 25: There exist rep-tiles of rep-k2. The number of solutions in the
case k = 12, 13 can be found in Table 1.
(4) Case k = 15, 16, 17: There exist rep-tiles of rep-k2 that include the pattern given in Figure 10.

Proof (0), (3) We can determine the (non)existence of rep-tiles up to k = 25 by SAT-based solvers. By
using GPMC, we can count the number of solutions (in the existence case) for each k up to 13.
(1), (2) By using NaPS and GPMC, we obtain that the numbers of solutions for k = 8 and k = 9 are
1358954496 and 51539607552, respectively. We then enumerate all non-concave polyominoes that can be
obtained by combining two or three copies of the F-shape 6-omino, and find all tilings using them. After
that, we count the number of ways of tilings that can be obtained by filling each rectangle of size 3× 4

by or its mirror image. The numbers of tilings should be at most 1358954496 and 51539607552

for k = 8 and k = 9, respectively. In fact, we found that we have already listed all tilings since they are
equal in both cases. The patterns of solutions are listed in Figure 7, Figure 8, and Figure 9. We use the
all non-concave 18-polyominoes obtained by combining three copies of the F-shape 6-omino, however, in

fact, only and are required to enumerate all solutions for k = 8 and k = 9.

Precisely, when k = 8, there exist six essentially different dissections. When we consider replacing

each rectangle by or its mirror image, we obtain the number of solutions given by Figure 7

is equal to 224 + 2 × 226 + 227 + 2 × 229 = 1358954496 that coincident with the number of solutions
obtained by running NaPS and GPMC. When k = 9, we have fourteen essentially different dissections.
By considering the numbers of rectangles in these dissections, the total number of solutions given by
Figure 8 and Figure 9 is 8× 230 + 2× 232 + 4× 233 = 51539607552 that contains all solutions obtained
by NaPS and GPMC.

Checking all of these solutions, we can confirm that we can construct any rep-tile for k = 9 by

combining , , and and add one copy of the F-shape 6-omino if necessary.

10
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Figure 7: All solutions of rep-tiles of rep-82 for the F-shape 6-omino (we can obtain many variants when

we fill each rectangle or its mirror image)

Figure 8: All solutions of rep-tiles of rep-92 for the F-shape 6-omino (1/2)

Moreover, the last one copy is added to form or . Concretely, is used

in the eight patterns in Figure 8, and is used in the six patterns in Figure 9. That is, when

k = 9, we can construct any solution by tiling some copies of , , and with

one copy of or . In other words, these solutions can be represented in the same

way of the previously known results.
However, when k = 8, we cannot construct all solutions in the way of the previously known results.

More precisely, the first two patterns among six patterns in Figure 7 can be represented in this way,
however, the next three patterns require to add two copies of the F-shape 6-omino. Moreover, the last
pattern requires to add four copies of the F-shape 6-omino. That is, among six patterns in Figure 7,
there are only two patterns that can be represented in the way of the previously known results and the
other four patterns give us new solutions. Especially, in the last two patterns in Figure 7, we have to

place both copies of and after placements of copies of , , and

11
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Figure 9: All solutions of rep-tiles of rep-92 for the F-shape 6-omino (2/2)

.

(4) In the case of k = 8 or k = 9, we can construct all rep-tiles by tiling non-concave polyominoes
obtained by combining two or three copies of the F-shape 6-omino. Then, is this common in all the
rep-tiles by the F-shape 6-omino? It is not the case. We first note that there exist patterns that require
four or more copies of the F-shape 6-omino. A concrete example is given in Figure 10. (There are no
rep-tile containing such a pattern in the previously known results.) We searched rep-tiles that require
copies of the pattern in Figure 10 with non-concave polyominoes obtained by combining two or three
copies of the F-shape 6-omino. Then there are some solutions (Figure 11) containing the pattern in
Figure 10 for k = 15, 16, 17. They are completely different rep-tiles from the previously known solutions.

4.3 Stair-shape 6-omino

Since the stair-shape 6-omino is not concave (in our definition) contrast with the J-shape and F-shape
6-ominoes, it is difficult to search its rep-tile pattern systematically. However, by generating the unit
patterns obtained by combining a few copies of the stair-shape to cancel the zig-zag part of it and tiling
the copies of these unit patterns, we succeeded to generate all patterns of solutions for k = 11. The
results can be summarized as follows:

Theorem 6 For a rep-tile of the stair-shape 6-omino of rep-k2, we have the following:
(0) There exists no rep-tile of rep-k2 for k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18.
(1) Case k = 11: All solutions can be obtained by the following way: We first dissect the 726-omino P

into one of three patterns in Figure 12. Then replace each polygon by , , or

(or their mirror images). We note that the previously known results are included in Figure 12(a), and
the patterns in Figure 12(b)(c) are new solutions that we found in this research.
(2) Case k = 12, 13, 23, 24, 25: There exist rep-tiles of rep-k2. The number of solutions in the case
k = 12, 13 can be found in Table 1.

Proof We omit all the cases except k = 11 since they were obtained by NaPS and GPMC. (Here we note
that k = 16 is an exception: the solution in this case could not be obtained by the time limit, however,
we could obtain it when we extend the time limit.) When k = 11, we perform the search by using three

12-ominoes obtained by , , and . We have three groups by the search.

The first pattern is given in Figure 12(a): It uses 59 copies of and one copy of .

There are three ways of tiling the left upper green rectangle by 11 rectangles of size 3×4, and six ways of
tiling the blue polygon by 23 rectangles of size 3×4. (For the latter blue polygon, there are three ways of

12
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Figure 10: A non-
concave 24-omino
that requires four
copies of the F-
shape 6-omino (any
removal of one or
two copies makes
concave)

Figure 11: Examples of rep-tiles that contain the pattern in Figure 10 for
k = 15, 16, 17

tiling of the left upper blue rectangle of size 11× 12, four ways of tiling of the right lower blue rectangle
of size 12× 13, and one in common, which implies six ways in total.) Since we can make a mirror image
with respect to the line of 45 degrees, the total number of solutions in the pattern in Figure 12(a) is
2× 18× 259 = 20752587082923245568.

The next pattern is given in Figure 12(b), which uses 58 copies of , one copy of ,

and one copy of . In this case, there are three ways to tile the left upper green rectangle, two

ways to tile the central brown rectangle, and three ways to tile the lower blue rectangle. The last pattern

in Figure 12(c) also uses 58 copies of , one copy of , and one copy of . It has

three ways to tile the green rectangle. In total, the number of solutions in patterns in Figure 12(b) and
Figure 12(c) is 2× (18 + 3)× 258 = 12105675798371893248.

Therefore, when we add all solutions in the patterns in Figure 12(a)(b)(c), it makes 42×258+36×259 =
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(a) (b) (c)

Figure 12: Three solutions of the stair-shape 6-omino for k = 11

32858262881295138816, which is equal to the number of solutions in Table 1. Therefore, we cover all
rep-tiles for k = 11.
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Ms Goncalves and the Breakout Rooms

Peter Winkler∗

The National Museum of Mathematics (in New York City, at the north
end of Madison Square Park in Manhattan) has, for two years and ongoing,
been running an email puzzle service called “Mindbenders for the Quaran-
tined.” Tom Tsao, one of the fifteen thousand or so subscribers, suggested
that I, as puzzle supplier, compose a puzzle based on breakout rooms.

The following proved to be quite a popular entry, perhaps one that Martin
Gardner would have liked for his famous Mathematical Games column. It
goes like this.

“Each day Ms Goncalves distributes her twelve fifth-graders into Zoom
breakout rooms containing three or four students each. She has devised
a schedule in which every pair of students is together in a breakout room
exactly once.

How many days does her schedule run?”

As usual for Mindbenders, the puzzle appeared on a Sunday morning; the
following Tuesday there was a hint:

“How many pairs of students are there in all? How many are together on
a given day?”

and then on Thursday, a bigger hint:

“Show there are only two numbers of days that make the pairs come out
right, and one of them is impossible.”

Below, we expand a bit on the offered solution, with the object of illus-
trating how puzzles like this are most effectively tackled.

For the purposes of this puzzle, a “pair” of students is an unordered pair;
that is, {Alice, Bob} is the same pair as {Bob, Alice}. It’s actually easier

∗Departments of Mathematics and Computer Science, Dartmouth College, Hanover,

New Hampshire 03755.
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to count ordered pairs, since (in this case) there are 12 choices for the first
student in the pair, then 11 for the second; thus, 12×11 = 132 ordered pairs
in all. Since this counts every unordered pair (like {Alice, Bob}) twice, we
have to divide by 2 to get the number of unordered pairs: 66.

In general, if there are n objects, then the number of unordered pairs you
can form from them is n(n−1)/2, often expressed by mathematicians as “n
choose 2.”

The puzzle statement stipulates that each of the 66 pairs of students
appears together exactly once. It’s natural to ask: how many pairs are
“taken care of” in a day?

There are only two ways to size the breakout rooms on a given day. A
“Type A” day, say, has three breakout rooms of size 4 each; a “Type B” day
has four breakout rooms of size 3 instead.

On a Type A day, each room has 4 students and thus services 4 choose 2
= (4× 3)/2 = 6 pairs; thus, the three rooms take care of 3× 6 = 18 pairs of
students altogether.

On a Type B day, each room services only (3×2)/2 = 3 pairs of students,
so the four rooms take care of 4× 3 = 12 students altogether.

It follows that if Ms Goncalves’ schedule unites each of the 66 pairs of
students exactly once, and if it is comprised of a Type A rooms and b Type
B rooms, then we must have:

a× 18 + b× 12 = 66.

To figure out what pairs of values are possible for the numbers a and b,
it’s useful to divide that equation by 6 to get:

a× 3 + b× 2 = 11.

Now it’s pretty each to check that the only possibilities are a = 3 and
b = 1, or a = 1 and b = 4. Since the schedule runs for a+ b days, we see that
in the first case, it’s a 4-day schedule; in the second, a 5-day schedule. Well,
which is it, then?

Suppose it’s a 4-day schedule, which has three days with breakout rooms
of size 4. Say one of those days is Monday, and another Wednesday. Consider
one of Wednesday’s breakout rooms; say it contains Carla, George, Miguel
and Sumit. Since there were only three breakout rooms on Monday, two (at
least) of these four students must have been in the same room on Monday.
(Technically speaking, this is an application of the Pigeonhole Principle,
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which says that if n pigeons occupy fewer than n holes, then some hole
must contain at least two pigeons.) But then that pair was together on both
Monday and Wednesday, which is not allowed.

We conclude that no schedule can contain more than one Type A day,
and in particular, a four-day schedule (which contains three Type A days) is
not possible. Hence, the answer to the puzzle is that Ms Golzalvez’ schedule
runs for five days.

Wait—if you don’t trust the puzzle-poser (and you certainly should not,
in this case), you’ll want to confirm that there really is a five-day schedule
that works. Constructing one is a “hammer and tongs” process, at least for
me, but it’s not a difficult one. Labelling the students by letters A through
L, you can certainly assume without any loss of generality that on the unique
Type A day in the schedule, the rooms are {A,B,C,D}, {E,F,G,H}, and
{I, J,K, L}. The next day’s rooms will need to take one student from each
of these groups, so the rooms may as well be {A,E, I}, {B,F, J}, {C,G,K},
and {D,H,L}. After this some blind alleys are possible, but after a few tries
you’ll end up with something like this:

Day 1: ABCD EFGH IJKL
Day 2: AEI BFJ CGK DHL
Day 3: AFK BEL CHI DGJ
Day 4: AGL BHK CEJ DFI
Day 5: AHJ BGI CFL DEK

Your table may differ—there are many solutions. Next step: let’s put an
end to the COVID pandemic and break out of breakout rooms!
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Abstract 

This paper is to formally introduce tetraflexagons that are completely analogous to hexaflexagons as introduced by 

Martin Gardner in Scientific American over sixty years ago, and place them on the same mathematical platform as their 

six sided cousins. 

In order to be a true flexagon, the thing must show all of its faces without backing up. 

This is all based on original work since I discovered true tetraflexagons in 1961.   Until recently, I believed mine were 

original never before published, but that is not so.   

I am proposing a systematic and visual method to distinguish one flexagon from another with the same number of faces, 

and serve to count distinct varieties. 

 

I am using flexagons to introduce my Penrose pattern coloring system as I can have several generations of the pattern 

on a single flexagon, or other artistic varieties.    In the past, I’ve written letters on tetraflexagons as that avoids separate 

pages after front and back and they fold in half to a letter shaped thing. 

 

Tetraflexagons 

All flexagons can be classified by the sequence in which they show their faces.  Tetraflexagons have four sides and show 

their faces in cycles of four. 

These two flex cycle diagrams are for the primordial pair of tetraflexagons. 

 

I call these drawings “Signatures”.  The direction of the cycles is 

indicated by the arrows and the red numbers are the faces where 

you have a choice to stay on the current cycle, or switch to the 

adjacent one. 

 

In 1961 I read of tetraflexagons, but I was not able to 

correctly fold the example from the book*.  With scissors 

and tape I was able 

make it work like a 

hexaflexagon.  The 

paper design looks like 

the pattern on the left. 

 

 

This map is the correct shape for the hexatetraflexagon. 

The primordial tetratetraflexagon is folded from a shape 

like one on the right. I found this at the same time. 

 

 

 

 

 

 

 

It did not take long to see how to add additional faces to working flexagons after “fixing” the square of squares. 

Tetra�exagon Catalog / Penrose Pattern Coloring Book

Red Deupree
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It turns out there are two distinct varieties of octatetraflexagons.  I number the faces in the order in which they are 

added to the signature, but keep all the even numbers on the front and odd numbers on the back.   New faces are 

always added in pairs as no true tetraflexagon can have an odd number of faces. 

 

*By adapting the Internet method for the flat square of squares to the version with the cut and altering the folding 
instructions slightly, it worked without the glitch from the seamless square of squares.   This sort of changes everything. 
 

The signature on the left can traverse 

all eight faces in sequence, whereas 

the one on the right cannot.   They are 

made from very distinctly different 

maps.   In Martin Gardner’s book, 

flexagons that are able to show all of 

their faces in sequence were called “street” flexagons, and their signatures are also 

always straight.   Thus there is always exactly one flexagon with a given number of 

faces that is capable of exhibiting this characteristic. 

 

 

The map for the 

“street” 

octatetraflexagon 

also shares a 

characteristic with 

the seven faced 

street 

hexaflexagon in 

Martin Gardner’s 

book: they both 

have “spiral” maps which when laid flat, have 

multiple layers.   The above map has four layers.   

 

 

 

 

 

 

 

 

 

 

In these maps, I also show the joints between the squares – a blue joint is fold-back from the center and red is fold up 

from the center, and yellow is fold both ways and be able to have other squares sit between them when folded.  Green 

is for the “glue” joint that has to be made after the flexagon is folded and it will meet with the glue joint at the other end 

of the strip.   By folding the squares together in reverse face order, two at a time, the partially folded strip will resemble 

the strip of the flexagon from which it was made.  This is also true for hexaflexagons.  The numbers in ()s are the face 

numbers on the back. 

 

 

 

 

 

 

 

Carrying on from octatetraflexagons, it turns out there are five distinct varieties 

of decatetraflexagons. 

Their signatures are 

familiar to any of us 

who ever played Tetris. 

 

    

 

 

 

This is the “aha” moment that led me to come 

up with connection between tetraflexagons 

and polyominos almost sixty years ago after 

reading Martin Gardner’s original edition of 

‘Second Scientific American Book 

Mathematical Puzzles and Diversions’.  Being 

able to visually enumerate the varieties and 

seeing this apply to hexaflexagons as well was 

the breakthrough to my method for 

explaining the number of varieties of flexagons with a given number of faces.   I would 

like to know if this line of thought is mathematically valid, but it does seem to work and 

is easier to visualize. 

 

 

The square signature above is where the first difference shows up as it is 

actually a U shape and thus there is a way to add a square on top of another 

in the signature by adding a pair of faces on the 9-4 edge, which does work, 

thus making for sixteen varieties of dodecatetraflexagons instead of 12 for 

the number of pentominos (the U, being asymmetric,  has four distinct ways 

to add another square, three of which lead to the “P” pentomino but have 

distinct flexagons to match.   The maps for the five of these, and a few 

higher order flexagons are in the tetraflexagon catalog. 
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I claim that this process can produce all possible true tetraflexagons.   

Maybe?   I think so, still. 

 

 Right and Left handed forms of flexagons, maps, and signatures are possible.   I claim that if the signature is the same, 

the map will be the same, regardless of the order in which faces get added. 

Because the primordial tetraflexagon does not have three squares in a row in its map, and the process for generation 

tetraflexagons with more faces never produces three squares in a row in its maps. 

 

 

So what to do with the square of squares (and its relatives)?  It works, but it is 

sort of wonky and has a flex cycle where it half opens and has a configuration 

with multiple squares on both sides and won’t open.   If joint is pulled on, the 

whole thing comes apart and turns back into the square of squares.  Flat.   But it 

does work, and its flex cycle is the same as my hexatetraflexagon that is not flat, 

but has two or more twists in its chain of squares. 

 

I adapted the method for folding the seamless square of squares to Martin 

Gardner’s square of squares and it produced a working hexatetraflexagon 

identical in its signature from the one I discovered in 1961.   

 

                                                                                                                                  

 

 This is what it should look like after each 

fold as the flexagon is assembled.  Note 

that folds 2 and 3 are both joints at once. 

 

The joints in the map follow the same 

principle, red is one-way up, blue is one 

way down, and yellow is two way. 

In this map, adapted from Martin 

Gardner’s map, the split is on the two-way 

joint on the left.   In these folding 

instructions, I am showing only the face up 

number you should see if the faces are 

numbered.   I recommend numbering the 

faces with Post-it® notes. 

 

 

 

 

   

Making Flexagons 

The process for making flexagons is fairly straightforward.   Fold the faces together in reverse order, two at a time, and 

make sure that the partially folded map looks like one of the maps with fewer faces. 

The final primordial tetraflexagon is folded by folding the 1s and 3s together so 2s are on the front and 4s on the back.   

Fold the 2s together, where they meet needs to be joined with a one-way joint facing in.   The easiest way to do this is 

carefully open the flexagon to the 3 face, turn a quarter turn to the 2 face which will now have its two halves neatly 

divided and open to be joined.  This last joint can never be automatically perfect, but if you can align the last edge for 

the one way joint, the whole flexagon will be the best it can be. 

All of my maps will end up with this step.  (The square of squares does not) 

A good flexagon should be able to be flexed through all of its faces repeatedly without wearing out, coming undone 

because of pulling the difficult folded stacks past each other in certain cycles, usually the 1-2-3-4 cycle because the two-

way joints next to the “4(1)” faces, present in all my maps, has to fold all the other folded faces at some point to 

complete the 1-2-3-4 cycle.   

Mathematical flexagons have zero thickness material that is inflexible and joints that are perfectly flexible, thus they fold 

together neatly with no need for engineering, real flexagons with more than 8 faces need more serious engineering. 

 

I have made nice “show” flexagons with four inch squares (and triangles), but I chose 2 inch squares and maps that could 

be printed on a single sheet of paper as the process for making skinned flexagons with cardboard insides and flexible 

joints is slow, expensive and error prone still.  Even with exact printing, cutting and folding errors can ruin a paper 

flexagon, and any flexagon with more than 6 faces is going to have “difficult” cycles where it has to be carefully coaxed 

to open to make sure nothing tears or breaks. 
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Penrose Patterns 

I have chosen to use my Penrose Patterns for decorations 

I have written my own app that generates these patterns so I could implement my coloring system, which takes note of 

the fact that Penrose patterns form rings of shapes (kites, darts, skinny and fat rhombuses).  My app counts the number 

of shapes in each ring and then assigns a color to each distinct count and colors rings of that could with the color. 

 

Like when a black light shining on certain rocks, reveals patterns, so when the color method is applied to a random patch 

of the pattern, its structure is revealed and is the basis for all of my Penrose art. 

 

 

 

 

 

The two color patterns come out of the box for free as skinny and fat is a property of every triangle. 

My app assigns a distinct ID to each triangle, so it can find adjacent triangles (halves of the familiar rhombuses, darts or 

kites) and has a database of distinct vertices, including the center points on the triangles so it can count the rings. 

 

The algorithm for dividing triangles to make the Penrose patterns is described in Wikipedia under “Penrose Tiles” 

Having my own program has allowed me to bend the rules, make spheres, as well as all kinds of artworks. 

 

  

Decorating Flexagons with Images 

If you want the flexagon to have all four faces form an image like Markus Götz’s folding puzzle, the orientation matters. 

These are the front and back of one of the flexagons in the gift exchange as they are printed. The flexagon has to be cut 

and the print has to be two sided and the sides must match up. 

 

Side 1                                                                                                Side 2 

 

This one shows the P1 Penrose pattern, which is the first one discovered by Sir Roger Penrose. 

This is for the tetratetraflexagon, the primordial one of its kind 

 

This pattern is designed to be rotated counterclockwise except for the last flex in the cycle when you rotate clockwise 

(so the images stay right side up.)    If the image is not a decagon, you are looking at the “back side”.   Turn it over and 

turn it right side up and it will show its faces in order. 
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The hexatetraflexagon is the first kind I discovered in 1961  

This decoration was chosen to represent the P2 pattern, the one that Martin Gardner used in is chapter on Penrose 

Tiles. 

       

Side 1        Side 2 

 

In order to make a nice flexagon with more than four faces, the “outside” edges that are on the “inside” of the pattern 

need to be trimmed a bit, and a bit of extra spacing for the two way joints. 

I recommend creasing the two way joints of a paper flexagon well before final folding.   As you fold the faces in pairs in 

reverse order, make sure the image aligns properly and your flexagon will behave reasonably.    Newly made flexagons 

need to be “broken in” by flexing them through all their cycles and making sure that the stacks set so they don’t bind 

and press the folded flexagon and the irregularities will work themselves out (within reason) 

Errors are additive and even if the flexagon is perfectly printed and cut, small folding errors can lead to edges poking out 

or the images not merging.   If the two sides are not exactly matched, the odd or even faces will always be a bit off as all 

the even faces are on one side and the odd faces on the other. 
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Are You a Mathematician? 
 

Dana Richards 

 

I first met Asimov on the sidewalk and introduced myself.  

He asked "Are you a mathematician?"  

"No, I never took any courses in math."  

He said "You mean you are working the same racket as I am?" 

 

While it is not true that Martin Gardner never took any course in mathematics (there is one on 

his University of Chicago transcript) the question remains: was Gardner a mathematician? 

We approach this question from several directions. 

 

Gardner never claimed to be a mathematician and always referred to himself as a “reporter.” 

His non-fiction writing reported on what others had discovered.  He often said that it is 

precisely because he struggled with mathematics that he was able explain it so well to others. 

He knew where the pitfalls were.  But with his struggles he got his hands dirty and made some 

discoveries on the way. 

 

In high school he wanted to be a physicist and was strong in math.  Also, he had a phenomenal 

collection of mechanical and mathematical puzzles. 

 

 
 

We can find in his magic writings (nearly every year from 1930 to 2010) an early acquaintance 

with the popular math books. In fact, when he moved to New York after the war he attended a 

lecture series sponsored by Yeshiva University led by Jekuthiel Ginsburg. Ginsburg was a strong 

proponent of popularizing mathematics. The time period was 1948 to 1952. He was seeking 

ideas for magic and satisfying his interest in math. It was for this audience he wrote a series of 

four articles for Scripta Mathematics, which were later expanded into his Mathematics, Magic 

and Mystery (1956). 
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One way he showed that he working through an issue rather than just reporting on it, is his 

proposing open problems in mathematics journals. He did this for decades, starting as early as 

1947. An example is: 

 
 

Occasionally he would offer cash prizes, 

 

His sole-authored math articles were fewer in number and reported on his experimentation. 

                            
 

However, he did coauthor several articles with well-known mathematicians. His contributions 

were often suggestions and examples that kept the work going forward with the occasional 

theorem.  It should be remembered that Gardner was almost never a coauthor.  In these cases 

he was just happy to contribute for the experience of working with his creative friends. 
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Sylanus Thompson text on calculus was reissued my Gardner, Calculus Made Easy.  The text 

used an older approach based on infinitesimals rather than limits. Rather than just adding an 

introduction Gardner added several chapters explaining the background for the modern reader. 

In addition to all the above Gardner also wrote about the Philosophy of Mathematics, starting 

in 1950 with “Mathematics and the Folkways” (Journal of Philosophy). 

 

The prevalent view is that Gardner was no mathematician and that when he started with 

Scientific American in 1957 it was all new to him.  In fact, he was always interested in math, but 

not as a job. He enjoyed it. He played with it and studied it. Obviously, his early columns were 

less sophisticated and his grasp of issues blossomed over the years. As this happened his circle 

of correspondents expanded. To keep up his end of the discussions his mathematical 

knowledge also expanded, 

 

If a “mathematician” is someone who derives theorems he was not one.  However, very few 

theorems are fundamental, they instead advance the field in a incremental fashion. Gardner, on 

the other hand, acquired a broad knowledge and used that to propel mathematics forward, 

influencing countless people to enter the field. If a “mathematician” is some who contributes to 

the success of mathematics, then Martin Gardner was one. 
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Dear Mister Gardner:  Apocryphal Letters from Children to Martin Gardner 

Rodi Steinig, M.S.Ed. 

ABSTRACT: In the fall of 2014, a group of six students got together for an hour per week to celebrate the 

Gardner Centennial. The students were all ten years old. They met in a Math Circle to explore the 

Gardner’s life, influence, and mathematics. The mathematical goal of the course was to develop 
students’ mathematical thinking by seeking patterns when none are obvious and by seeking 
ways to crush seemingly-obvious patterns that aren’t really patterns at all. The students 
experienced great joy while doing so. The facilitator kept a written record of the students’ 
reactions, work, comments, and questions, all of which have been reorganized by the facilitator 
into a series of letters to Martin Gardner. The letters are paraphrased with some direct quotes 
interspersed, with the hope that Mister Gardner would have enjoyed reading them. 
 

September 23, 2014, Week 1 

Dear Mister Gardner, 

We’re a group of six kids meeting six times in a Math Circle in Philadelphia. We’re ten and eleven years 

old. We’re celebrating the Martin Gardner Centennial.  

 

Our facilitator Rodi said that you mutilated a chessboard. Strange. In your problem “The Mutilated 

Chessboard,” you asked if we remove opposite corner squares, can we cover it with 31 dominoes? 

   

We had a lot of questions about it. First of all, can we please use more than 31 dominoes? We’re 

wondering whether 31 dominoes is enough to cover the whole board? Why are we using paper, 

instead of real dominoes?  And can we switch the position of the removed squares?   
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We had a lot of ideas about how to solve this problem. We could let the dominoes go on top of each 

other. We could tilt them. We do think that 31 dominoes seems like enough to cover 62 squares 

since 31+31=62, so it should work. But, it might not be working b/c there are not really 31 dominoes 

here (let’s count them!). It doesn’t seem to work – maybe because of where the removed squares 

are? Wow, Mr. Gardner, you really know how to write a great question.  At this point we’re thinking 

that it doesn’t work with diagonal corner squares removed, but it does with corners that are next to 

each other.   

  

 

   

Rodi also showed us your problem Bronx versus Brooklyn. She gave it to us with a new wording but 

kept the math the same. After half an hour, we came up with the same explanation that you did! We 

figured it out because every time someone said something, even if it was wrong, it helped us with our 

next idea.  We were sad that time was up in our class. We asked Rodi, “Are there more problems like 

those?” 

Sincerely, 

Crystal, Candace, Akira, Hudson, Mckenna, and Lily 

 

September 30, 2014, Week 2 
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Dear Mister Gardner, 

Rodi put on the whiteboard a drawing of your problem “A Switching Puzzle.” We did not let her tell us 

what the question is; we wanted to guess it. 

  

We asked a lot of questions and came up with a pretty good question for this picture, but it was not the 

question you asked about. We got to work on your question by tracing train routes with our fingers. 

Unfortunately, that erased the drawing! So we started to use the markers as trains, which worked well 

since they can be attached to each other. 

 

All of us were not at the board, though. Lily sketched it out in her notebook and Crystal was just sitting 

there, seeming to do nothing. Turns out she wasn’t doing nothing. At the same time, both Lily and 

Crystal jumped up and said “I think I’ve got it!”   
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“I think I’ve got it,” is the thing we say the most often in Math Circle. The next most-common thing we 

say in Math Circle is, “Oh wait, never mind.” We all did end up at the board working together to come 

up with the same solution that you did. It was a combination of working together and working alone, 

like real world work.  Every time one of us said something, it made another one of us think of a new 

idea.  

 

Next, Rodi showed several maps that were like a lot of other paper maps, easy to unfold and hard to 

refold in the same way.  We’re used to Google maps, so we didn’t know this. After that, she said, “I just 

can’t figure out a certain puzzle no matter what I try.” That got us so excited!   The puzzle was called The 

Folded sheet by Henry Ernest Dudeney that you wrote about in one of your books. Rodi said she worked 

and worked on this puzzle.  She read the instructions in the back of the book.  She watched a video on 

YouTube that had hints but not the answer.  She was hoping that we could help her. 
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We tried and tried too.  We didn’t get very far – just 1 then 2 in their places.  Mckenna made her own 

“map” out of a new paper with larger squares.  Soon everyone could get 1, 2, 3.  Candace made a new 

map with tiny squares.  After a while some of us could get to 4.  Then we all agreed that there must be 

some kind of weird fold, maybe like a diagonal.  Some of us tried this and made it to 6.  Hudson even got 

to 7 but lost 8 in the folds.  By then, we were so frustrated!  We decided to take our maps home. We 

made Rodi promise to bring the book with your instructions next time. 

Rodi thought then would be a good time to give an “easier” puzzle: your “Folding Money Fun.”  You 

show in pictures and words how to take a dollar bill and fold it one way and unfold it in the same way, 

but George Washington ends up upside down. Rodi asked us to draw Washington’s face on the back of 

our maps, which were the size of a dollar bill. We needed extra time to get Washington’s hair just right, 

but Rodi told us not to worry about this because it didn’t have to do with the math we were doing. 

The question you ask is “Why does the bill turn around?” It would have been better had Rodi asked us 

“Can you follow these directions and get the same result?”   You say that “If you have followed the 

illustrations exactly…”  But it isn’t so easy to follow the instructions exactly.   It’s hard to “fold forward 

and to the left.”  Especially ‘cause we’re only 10 and we recently learned our directions.   

Only two of us were able to follow the directions.  The rest of us got so, so frustrated!  The two of us 

who could do it were sitting closest to the book.  Rodi should have given each of us our own set of 

instructions!  But she wants us to do everything collaboratively, with everyone doing the same thing at 

the same time, and asking each other for help. If we have to do things that way, maybe this just isn’t a 

good problem for our group.   So far, “Bronx vs. Brooklyn” seems the be the most successful puzzle for 

our group – we were super-interested, thinking hard, working with our friends, and nothing that was 

hard for us to do with our hands like folding or cutting.  “A Switching Problem” was a great problem for 

us too – since we talked more than using our hands. Next time, Rodi plans to make one very large dollar 

bill for everyone to fold together.  But then she would get to have all the fun drawing George’s hair!   

 

Anyway, the two of us who did figure out how to turn George upside down did realize the answer to 

your question.  The rest of us struggled with the folding. Crystal got so frustrated that she doesn’t want 

to do paper folding ever again. The rest of us are willing to give it a chance. And we are not blaming you. 

At the end of today’s class, we finished with some of your riddles and word games, so we all left with a 

smile.   

Sincerely, 

Crystal, Candace, Akira, Hudson, Mckenna, and Lily 
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October 7, 2014, Week 3 

Dear Mister Gardner, 

It turns out that the last two weeks Rodi was telling a few of your problems from what she remembered, 

instead of reading them directly from your books. So today, we got to hear your versions of some of the 

problems. We thought the way you talked was confusing! (But Rodi thought that your wording was 

incredibly clear and that our vocabularies are lacking. We are only 10, after all.) When we heard “A 

Switching Puzzle” in your words, we couldn’t remember how we solved it before. We wanted to make 

sure we were following all of your rules, so we re-solved it. That was fun! 

 

Rodi asked us to go back to “Folding Money Fun.”  This time she had prepared a big paper dollar bill.  

We were very excited, so we fought over who got to draw in George Washington’s hair.  Each of us did a 

different section of the bill and folded while listening to the directions.  We did it a few times.  The good 

news is that by this time, we were all sure of how to trick our friends (and parents!) with this puzzle, and 

we also knew why it works.  The bad news is that we couldn’t all hold the large bill at the same time. 

Rodi should have made it at least 4 or 5 feet long because in this problem, the way it’s facing matters – 

we have to all be on the same side for the folding to be able to follow along.  

 

Next we went back to “The Folded Sheet” with an extra-large number map.  Rodi read aloud your 

instructions as we folded. Unfortunately, one of us, we’re not naming names, got so excited that they 

took charge of folding the map. Another of us got frustrated with that bossiness and walked away.  And 

another played the peacemaker and brought that student back.   
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Rodi asked everyone to work together, but it was too late.  She likes to try to become invisible in Math 

Circle, but should have told us what to do when things got too intense. We worked together but we 

were grumpy.  One of us suggested that everyone fold their own map. You know, Mister Gardner, that 

Rodi does not like doing it this way, that it isn’t collaborative enough for her. She didn’t have extra paper 

anyway, so we tried doing one large map for a bit without arguing but also without a solution.  

    

Did we mention that we were having class outside on picnic tables? On one of the tables today was a 

large, laminated copy of your “Maze of the Minotaur” with some smaller copies of something that 

looked the same.  We moved to that table without being told when we lost interest in the Folded Sheet. 

Since most of us are big fans of Percy Jackson’s adventures, we asked repeatedly “Is this the labyrinth of 

Theseus?”  All she would say is “What do you think?” and  then we argued about it. 

Most of us started tracing the large path with our fingers. Our fingers walked all over it trying to figure it 

out. While we were working, we heard that you said ‘No one has ever drawn a maze that looks easier to 

work, but actually is so difficult.’  Rodi thought she was a smarty pants because she initially thought she 

had solved it in about 2 minutes, so she thought we’d be able to do it without getting annoyed. She 

drew a larger version for us and she couldn’t solve it. Smarty Pants Rodi thought she must have drawn it 

wrong. But she hadn’t. …she started to realize that you were right. … She started asking us the  

questions she was wondering  so that we could help her figure it out…. It turns out that she didn’t have 

to ask us questions at all because we were wondering the same things:   

• Is there actually a pattern in the solution? 

• What’s the difference between a maze and a labyrinth? 

• Is the solution manageable? 

• Are there useful strategies for drawing the maze? 
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After a while, finally one of us successfully solved the maze. And guess what: we weren’t arguing 

anymore! We were very calm.  Do you think this calmness was from walking our fingers in a labyrinth? 

Rodi read aloud some parts of the new Scientific American article about you.  We enjoyed hearing about 

your playfulness. And it was nice, too, for us to see a picture of you. You are not a guy from ancient 

history! 

 

Rodi ended class with one of your math puzzles that involved no objects – no pen, no paper, no 

chessboard, no poster, no giant dollar bill, no nothing. Scrambled Box Tops. It went like this: 

“Imagine that you have three boxes:  one containing two black marbles, one containing two white 

marbles, and the third, one black marble and one white marble.  The boxes were labeled for their 

contents – BB, WW and BW – but someone has switched the labels so that every box is now incorrectly 

labeled.  You are allowed to take one marble at a time out of any box, without looking inside, and by this 

process of sampling you are to determine the contents of all three boxes.  What is the smallest number of 

drawings needed to do this?” 

 

We made some progress toward the solution, but then we were out of time. Rodi really needs to teach 

it differently next time so that everyone is talking; today only 2 of us talked the most. And  they didn’t 



LEGACY | 352

  

even agree. They worked on the problem totally differently. One of us drew it, the other was thinking 

about it. Both ways actually helped.  How did you figure it out, Mr. Gardner?  

Sincerely, 

Crystal, Candace, Akira, Hudson, Mckenna, and Lily 

 

October 14, 2014, Week 4 

Dear Mr. Gardner, 

Rodi opened up a box and said “I’d like to show you my creatures,”   

“That’s a Go board,” protested Crystal. 

Rodi said “No, this is the habitat of my creatures.  It does resemble a Go board, but it’s not one.  I’d like 

to tell you about how this species of creatures exists over time.”  She placed a few black counters on the 

board and said “They can live if they have 2 or 3 neighbors.” 

 

“What if they only have one?” asked Akira.   

 

“Then they die.”  Said Rodi 

“Of loneliness,” added Mckenna. 

“What if they have 4 neighbors?” asked someone else. 

“They die.”  Rodi went on like this for a few minutes. We asked a bunch of questions and figured out the 

rules of death and survival.  “In real life,” Rodi said, “something else happens besides survival versus 

death.”  

 After a couple of guesses, Hudson said “new ones are born!”  He was excited. Then Rodi explained the 

rule about births – they only occur in a cell/location with exactly 3 neighbors. 

 “Is this something Martin Gardner invented?” asked both Lily and Mckenna. 

“No, but… “ Rodi started to say, and before she got the sentence out, we all said “Martin Gardner made 

it famous.”  We get what you do. Rodi showed us your article about it.  

 “Are you going to ask us if we can fill the whole board with creatures before they die out?” asked Lily. 

Rodi said “That’s a really interesting question to explore.  Today, though, I wasn’t going to ask you any 

questions.  My plan is just to show you the creatures and the rules they live by, and have you all come 

up with questions.” 
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“Is it a board game?” asked Mckenna.  Rodi said let’s try it out and see what we think is the answer to 

that.  We started to play and had a bunch of questions and ideas: 

• “It matters how you start the game” 

• “How do you win?” 

• “Will they all die?” 

 

We played more and saw that some initial positions resulted in immediate or quick death to all, some 

seemed to keep going, and some ended up in a stable position. We called that a “Steady Square.”  We 

wondered if there are answers other than a steady square or death?   
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While we worked, Rodi told us about how this game was one of the early ways people used math 

modeling to predict outcomes for populations of species.  “Oh no, Ebola!” we said. “Yeah, people with 

the wrong number of neighbors might die of Ebola!” we said. We were a bit nervous so asked Rodi “Is 

that how it works in real life?”  She told us that it’s just a game, and its purpose mainly is to get us 

thinking.  It isn’t human lives and deaths.  Remember, she said, many factors influence our survival.  All 

this game specifically examines is population density. 

Almost an hour later, we were still at it, and then it was time to go home.  

Sincerely, 

Crystal, Akira, Hudson, Mckenna, and Lily 

 

 

October 21, 2014, Week 5  

Dear Mr. Gardner, 

Candace wasn’t in class last week and was early for class today.  She walked in and  saw our work on the 

board from last week. She asked, “Why does it say ‘die?’”   

Crystal and Lily were also early for class, so Rodi told Candace to “Ask them.”  Crystal set the board up 

for Life. Then Lily explained the rules.   

Rodi seemed to think that some of Lily’s explanation didn’t make sense, so she rudely interrupted.  “I 

think Lily is doing a fine job of explaining,” said Crystal.  Crystal was right.  Rodi did need to butt out.  

Rodi sometimes has that annoying teacher habit of butting in. She needs to work on that. 

Then Hudson got there and said “I’ve been thinking about it all week and still can’t figure it out.”   

“What are we trying to figure out?” asked Candace. 

Before anyone could answer her, Akira joined the group and joined into the demonstration of the rules 

for Candace. 

“But what is The Question?” asked Candace several times.  We explained that the goal is to see whether 

any initial patterns could generate ever-expanding life.  We disagreed about how to figure this out.  A 
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few of us wanted to take turns randomly setting up patterns and seeing what happens. We had done 

that for a while last week, until your article helped us to realize that a system starting with 1 creature 

might be good. You and Mr. Conway called them “counters.”  Rodi calls them “creatures,” and we laugh 

when she forgets and refers to them as counters or stones. 

Rodi was being a little pushy. We think she was getting a bit stressed to solve things since we only have 

one more class after today. She said, “Since we started to use this system last week, let’s give it a 

chance, and if you don’t want to keep going with it, we can change the way we’re doing it.”  So we did.  

Rodi kept track of the results on the board. After about 20 minutes, a few of us got bored.  Actually, 

more like frustrated.  At this point, we had tested 7 set-ups today and some more last week, and none 

had continued growing after 2 or 3 moves.  Rodi told our grownups that those 40 minutes of 

perseverance last week plus 20 today adds up to an hour of very impressive determination for kids our 

age.  We had discovered that some set-ups lead to “death” (or what you call extinction), some to the 

“steady square” (or what mathematicians call a “block”), and some to the “infinity turn” (or what some 

of your friends call a “blinker” - a type of “oscillator”).  We really enjoy naming these patterns! But so 

far, none continued growth. 

 

We were excited to hear that in the olden days of 1970 you helped Mr. Conway offer a $50 prize to the 

first person to prove or disprove the conjecture that “no pattern can grow without limit.”  We were 

wondering about too! 

So anyway, Rodi admitted that this very boring approach to the problem does get tedious.  (These days, 

Mr. Gardner, this type of problem is done on a computer.)  We definitely would have had more fun 

randomly trying different arrangements/numbers of counters until we discovered our own method.  

Creating the set-ups from our imaginations instead of a rule is definitely more exciting.  Is that what real 

mathematicians do?  

At this point in class, two of us were talking about things that didn’t have to do with math. One hard 

thing in this math circle is that we REALLY like each other, but only see each other for this one hour per 

week.  We want to socialize too!  

Two of us were focusing on playing Life, and one was doing both.  
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Rodi said, “I think we’re ready to put our attention on something else.” 

“I’m not,” protested Hudson. 

“I know you’re not,” said Rodi.  “I know that you could work on this problem all day long.” 

“Yes I could.” 

“Let’s try to come back to it later today if we have time.”   

“Okay.” 

So, we moved on.  At this point, we have 2 working conjectures about Life: 

1) There are no set-ups that can grow, starting with 4 creatures. 

2) There is at least one set-up that will result in continuous growth. 

Our group disagreed. 

Okay, time to talk about something else: 

MURDER… 

…at the Ski Resort. 

Since some of us were getting bored, we moved to a different table, and Rodi read us one of your 

“Tricky Mysteries.”   

“A Chicago lawyer and his wife went to Switzerland for a vacation.  While they were skiing in the Alps, 

the wife skidded over a precipice and was killed.  Back in Chicago an airline clerk read about the accident 

and immediately phoned the police.  The lawyer was arrested and tried for murder. 

The clerk did not know the lawyer or his wife.  Nothing he’d heard or seen made him suspect foul play 

until he read about the accident in the paper.  Why did he call the police?” 

We asked question after question after question, coming up with conjecture after conjecture after 

conjecture.  After a few minutes, we realized that to test each conjecture, it was helpful to re-read the 

problem to see if the conjecture violated any of the rules.  (Rodi was so impressed that we came up with 

this great math skill to on our own. C’mon, Rodi, we are ten already!)  We discussed, while all Rodi really 

did was re-read aloud the problem, or parts of it, repeatedly, when we ordered her to.   

Finally, Lily, Akira, Crystal, and Candace agreed on an answer: “The clerk was familiar with the precipice, 

and knew that it wasn’t a dangerous place.  Therefore the husband must have done something 

intentionally to make it dangerous.  He pushed aside and piled up the snow to make her fall over the 

edge.  Something in the newspaper article revealed specific info about the precipice, raising the clerk’s 

suspicions. 

Hudson disagreed. “How could you push aside that much snow?!” demanded Hudson.  The rest of us 

came up with an answer that made him change his mind.  We all agreed now.  We looked at Rodi. 

“We came up with a solution,” said Candace.  We demanded that Rodi re-read the problem to double 

check. We then agreed that nothing in our solution was wrong.  Triumph! 
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“What does Gardner say the answer is?” asked Lily. 

“Do you mean to ask what he says ‘an’ answer is?” asked Rodi. 

“I mean, what does he think the answer is?” 

Here’s your explanation, Mr. Gardner: “The clerk had sold the lawyer a round-trip ticket to Switzerland, 

and a one-way ticket for his wife.”  

“Round-trip!” Crystal exclaimed. She jumped out of her seat.  “That is so good!”  She loved Gardner’s 

explanation.  The rest of us were frowning.   

“That’s it?” we asked.   

“Yep,” Rodi said. 

“Let me explain to you how round-trip tickets work,” said Crystal to the group.  She thought (and was 

probably right) that not everyone understood.  She explained, but the rest of us were NOT impressed.   

“There could be many reasons that they weren’t planning to travel home together,” suggested several 

people.  We talked about this.  We decided that your “answer” left a lot to be desired.  Rodi talked to us 

about the power of our logic – how causal assumptions can be knocked down/weakened with 

alternative explanations.  She said the causal assumption here was the clerk’s, and possibly the police’s, 

assumption that if the couple went to Switzerland on vacation together, that then they would/should 

return together.  We did not accept that assumption, and therefore we do not accept your solution.   

“Ours is better,” said Candace. She was excited.  We all nodded.  Even Crystal was convinced. 

Rodi was, of course, thrilled that we were so willing to disagree with such a famous smart person.  Our 

open-mindedness is so inspiring to her.  Her (boring) adult mind, of course, is too caught up in your 

fame.  Rodi didn’t even think she would ever come up with a different solution to one of your problems, 

even though she knows people do all the time.  That was one of the big points of your column in 

Scientific American, right?  That plain old regular people like us might have a better idea than you did 

about how to solve a problem.  We love this about you, and so does Rodi, even though she still feels 

intimidated. 

Finally, we came back to your problem Scrambled Box Tops. 

 

“I know the answer!  Please, please, please let me say it!”  begged Crystal right from the start.  Rodi 

knew that Crystal knew a good answer because when we first tried this problem 2 weeks ago, Crystal 

saw the solution and said it right away out before Rodi could stop her.  But last time, the rest of us were 
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still trying to understand the question when she explained it.  So no one knew what she was talking 

about. 

But now everyone understood the problem.  Lily and Akira were wiggling in their seats with solutions 

too. 

Rodi said “I see you have an idea of what the solution might be, but so do some others.  Let’s make sure 

everyone gets a chance to state their conjectures.” 

“Let’s raise hands,” suggested someone.   

“Good idea,” said someone else. 

Rodi said “If that’s okay with the rest of you, I’ll let Crystal go first and everyone will get a chance.”  The 

others agreed, as they could tell she was excited.   Most of us raised our hands, so Rodi went around the 

table asking everyone for their conjectures. Here are our conjectures: 

Crystal – If you pick a random marble out of the box labeled BW first, you can figure them all out 

from one. 

Lily – if you pick one out of BB or WW first, you can do it in two draws, and one if you’re lucky. 

Candace – I don’t know. 

Akiru – I can’t remember. (He had lost his train of thought, even though he had an idea a couple 

of minutes ago. Frustrating. Rodi said this happens in math - Now you see it, now you don’t.) 

Hudson – I want to see it!  We could use items from the Life/Go set as props. 

Rodi said, Okay, let’s do it.   

So we acted it out and agreed that both conjectures work.  We were all satisfied and it was time to go 

home. 

Sincerely, 

Crystal, Candace, Akira, Hudson, and Lily 

 

 

October 28, 2014, week 6   

Dear Mr. Gardner, 

Our last class was today. Mckenna wasn’t here last week, so we began by explaining our problem to her: 

How can we figure out if any set-ups in Conway’s Game of Life lead to a pattern of continued growth? 

The method we started using is helpful.  But it’s boring! We looked at all of our results from the prior 2 

weeks. “What should we do?” Rodi asked. 

“Let’s just do our own set-ups,” said pretty much everyone. 
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Hudson had come to class with something he had been thinking about during the week – starting with a 

solid rectangle at the corner of the board.  He wanted to try that.  Akira wanted to test a 3x3 square that 

was empty in the middle.  Seeing these 2 set-ups triggered Mckenna and Candace to want to test what 

happens when you set up “half the board” (a 4x8 rectangle).  For the past 2 weeks, Lily had been asking 

whether it’s possible to fill the whole board, but unfortunately, she wasn’t here today. Crystal was a bit 

disappointed to not have a conjecture of her own, but she watched the others test some of these 

hypotheses.  Four of us were working from 2 boards (one a Go board, the other Othello). 

 

As we worked, people started throwing counters across the table occasionally.  Rodi kept us calm with 

some of Mr. Conway’s backstory (at our request).  She read to us from a very entertaining article.  Who 

knew that mathematicians could be interesting? 

“Here’s a photo of him.  He’s still alive, and he leaves nearby.”  Rodi told us. 

Akira nearly leapt out of his seat.  “Then there’s still a chance that we could get the prize!”  he said 

excitedly.  Everyone wondered whether Conway was still offering that $50 that in 1970, you helped him 

offer to anyone who could prove or disprove that ever-expanding growth was possible.  We discussed 

how little this prize was for such a famous magazine. We also wondered if we could visit Mr. Conway. 

While we worked, Rodi told us more of Mr. Conway’s backstory from the article.  She thought we didn’t 

notice, but we did notice that she stopped talking when the Life exploration got more intense, and then 

resumed the stories if anyone starting throwing stuff.  Here are some of the things we talked about:  

1) mathematical topics Mr. Conway is known for. We like the reminder that math is not simply 

arithmetic.  We didn’t know that one can be a “knot theorist.”  We also loved that Mr. Conway 

created a new number system, “surreal numbers.”  Four of us had created “Pumpkin Numbers” 

last year in our course about named number types. 

2) a funny quote about Mr. Conway’s enjoyment of teaching 

3) Mr. Conway’s Free Will Theorem (Rodi was so excited when she read about this; it changed the 

way she thought about things.  But we kids were not in awe of this new idea at all since our 

thinking is fresh.) 

4) Mr. Conway’s opinion that the Game of Life is really “rather trite… trivial”  

5) Mr. Steven Wolfram’s disagreement with Mr. Conway about the relevance of Life 

6) how/why Mr. Conway came up with Life – he was seeking simplicity 

7) an expensive arithmetic mistake he made when offering a large cash prize.  “And he’s a 

mathematician!” said Mckenna.  We were relieved that everyone makes mistakes. 

8) why he suspects he may be a bad influence on people 
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9) his “recipe for success” in a mathematics career 

Then Rodi told us something surprising about your friend Mr. Conway. “One more thing I forgot to 

mention from the article. He went to prison.”  Some of our eyebrows shot up at that. Not Crystal’s 

though. 

“Yeah,” she said.  “He seems like the kind of person who would have gone to prison.” 

“For what?” the others asked Crystal. 

“For something really awesome!” she replied.  Rodi quoted the article about Conway’s 11 days in prison 

for participating in a “ban-the-bomb” protest.  This was exactly the type of “crime” that Crystal had in 

mind.   

“No one would get arrested for something like that in our times,” said someone, but not sure.  Then we 

argued whether it really “counted” as “going to prison” if he spent “only 11 days” there. We doubt 

you’ve been to prison. Have you, Mr. Gardner?  

As we talked, we were making ground with our Life progress.  With these new set-ups, things were 

neither stabilizing nor dying after just a few moves.  The shapes of the populations were changing 

dramatically.  We got a new idea:  “If you fill the whole board or larger (rectangular) area, all but the 

corners will die and a new row will be born!”  The half-board and open square that Candace, Mckenna, 

and Akira had started at the beginning had morphed into new shapes.  Hudson’s smaller corner 

rectangle had gone extinct, so he started testing a new set-up.   

More work, more stories.  Candace and Mckenna got very excited.  Their half a board had morphed into 

two “steady squares.”  The conjecture morphed into “we’re done, it won’t die, but won’t grow anymore 

either.”   

Then Candace asked hopefully, “Should we name it?”  The others nodded.  Rodi asked Akira for a name 

for his set-up; he called it “The Three-Square.”  Rodi asked Candace and Mckenna- they named theirs 

“Half the Board.”  Hudson didn’t name his.   

While we were naming formations, someone noticed that the two steady squares on Candace and 

Mckenna’s board were just one diagonal unit away from each other.  So a birth could occur!  The end 

was not near, maybe. We went back to work, and Rodi to storytelling.   

Then, sadly, the Half-Board set-up died after many moves.  Candace and Mckenna decided to restart, 

from the position where 2 steady squares were one diagonal unit apart.  As they worked that, we put 

our findings so far on the board: 

• The Three-Square:  about 20 moves in, it was still growing 

• Half-the-Board:  died after 20-30 moves 

• H’s second set-up:  still growing with 10 moves 

Then something really interesting happened.  (For four of us, all of this was clearly interesting, we said 

“this is fun” more than once.  For Crystal, it was not very interesting – probably because she didn’t have 

her own conjecture to test.  Fortunately, she is a huge fan of biographies so thoroughly enjoyed the 

stories about Conway.)   
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Anyway, here’s the interesting thing we were about to mention:  Candace and Mckenna’s new work 

with the 2 steady squares kept growing past the point where it did before.  How could this be?  Did we 

make a mistake? This set-up started in a different place relative to the edge, so does it matter where 

you place your set-up on the board? We wish you were here to work on this with us, Mr. Gardner. And 

that we had a larger board. Maybe an infinite board or a computer program. 

Rodi asked us whether we could trust that any of these patterns that were growing at this point would 

continue to grow.  We guessed how many moves would be enough to be sure: 

• 30 moves? 

• 50 moves? 

• 1,000 moves? 

• No such number/you can never be sure?  (After we discussed this for about half a minute, 

everyone agreed with this conjecture.) 

 

Since today was our last class, we discussed how to continue to play Life at home.  Hudson said, “I want 

a Go board.” 

As he mentioned last week, and the week before, Akiru said “I want to learn to play Go.”   
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“I can teach you,” said Crystal, as she did every week.  But Rodi never make time in class for this to 

happen.  Then we came up with other ways to play Life at home if you don’t have a Go board:  Othello, 

Scrabble, possibly checkers, home-made with paper.  (Some of these options, we thought, don’t offer 

enough squares to progress very far.)   

We had about 10 minutes left.  The kids requested another of your “Tricky Mysteries.”  So Rodi read us  

Funny Business at the Fountain: 

“At a hotel in Las Vegas, a lady rushed out of the manager’s office to get a long drink at the 

water fountain in the lobby.  A few minutes later she came out for another drink.  This time she 

was followed by a man.  There was a mirror behind the fountain.  When the lady raised her head, 

she saw that the man behind her had a knife in his upraised fist.  She screamed. The man 

lowered his knife, and then both of them began to laugh.  What on earth is going on?” 

Crystal immediately announced, “I have an answer!”  A person working in the office was trying to sell a 

bunch of stuff to the couple at the water-fountain. It was really annoying.  They wanted to get away 

from the person who kept trying to sell them stuff.  They couldn’t pull themselves away.  So they faked 

the knifing attempt to distract the salesperson from the sales pitch.  And it worked.” 

We had other ideas too, most involving some sort of prank.  Since last week we solved the mystery by 

checking and rechecking the exact wording of the problem from the book, we did that again.  We 

decided that we liked Crystal’s solution best.  Of course, we then demanded your explanation: “The lady 

had the hiccups.  Her boss was trying to stop them by frightening her.” Our solution is better. What we 

mean, Mr. Gardner, is that we all appreciated the logic in your solution, but just like last week, we 

appreciate our own solution more.   

Then it was time to go.  Thank you for giving us 6 weeks of math fun. 

Sincerely, 

Crystal, Candace, Akira, Hudson, and Mckenna 

 

APPENDIX 

ADVERTISED COURSE DESCRIPTION: Before there was Vi Hart, there was Martin Gardner.  Celebrate the 

Martin Gardner Centennial with an exploration of Recreational Mathematics.  For 25 years, Gardner 

wrote the Mathematical Games column in Scientific American, and became legendary for his 

unconventional approach to mathematics.  In this circle, we will explore his life, his influence, and of 

course, his mathematical puzzles.  The goal of this math circle is the same as the goal for all of them:  to 

develop mathematical thinking.  Recreational mathematics is yet another avenue for seeking patterns 

when none are obvious, and for seeking ways to crush seemingly obvious patterns that aren’t really 

patterns at all.  
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Figure 1: Diagram of a prototype flippe top. 

Designing a flippe top 
George Bell 

September 2020 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 shows a design for a new kind of spinning top.  We start with a solid sphere of 

radius R.  A hole of radius r is bored through the center and a steel ball (of radius r) is 

inserted.  A stop at each end is necessary to keep the steel ball inside the sphere.  The 

maximum distance the steel ball (center) can move away from the sphere center is 

denoted by d.  At this stage there are only three design parameters: R, r and d, although 

the density of the materials used is also important. 

Our goal is to design this top so that it behaves like a classical tippe top.  When spinning 

at a sufficiently high speed, the classical tippe top is defined by two properties: 

1) The Figure 1 position when the center of mass is directly below the center of 

rotation is unstable. 

2) The “inverted state” where the center of mass is directly above the center of 

rotation is stable. 

Suppose we can design the Figure 1 top with these two properties. When this top is spun 

about the z-axis, it is an unstable position and will invert.  After inversion the steel ball will 

(presumably) drop down; the top is back at the starting position, but flipped 180°.  This 

process will repeat, flipping over and over.  Because this is a tippe top which flips 

repeatedly, I call it a “flippe top”. 

x 

y 
z 
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Figure 2: The four components of a wood flippe top. Component 1 is the full sphere. 

How can we determine if the top in Figure 1 will 

behave like a classical tippe top?  Fortunately, 

several recent papers [1, 2] have considered the 

behavior of a sphere with an offset center of 

gravity.  These papers give specific criterion for 

when the Figure 1 state is unstable and the 

inverted state is stable. 

We denote by 끫롸끫룊 the moment of inertia of the top 

about the x-axis and by 끫롸끫룎 the moment of inertia about the z-axis (we assume the top is 

symmetric in the x-y plane, so that 끫롸끫룊 = 끫롸끫료).  The criterion for “tippe top behavior” is 

complex, but as an initial design target we want 끫롸끫룎 > 끫롸끫룊 

All changes we make to the sphere can be thought of either as helping this inequality or 

going against it.  For example, the steel ball increases 끫롸끫룊 and only slightly increases 끫롸끫룎, so 

acts against this inequality.  The hole through the center helps this inequality.  This is one 

reason that we choose to bore the hole through the entire sphere.  Such a large hole may 

affect the spinning dynamics when 끫뢾 끫뢊⁄ > 1 4⁄ —in that case end caps may be necessary. 

A wood flippe top 

The easiest way to create a wood flippe top is to start with a solid wood sphere and cut a 

hole through the center.  We then add a steel ball and a pair of stops to trap it.  For stops 

one could use a pair of wooden washers.  To determine good values for R, r and d we 

need to calculate the moment of inertia of this object. 

 

 

 

 

 

 

 

Let us now calculate 끫롸끫룊 = 끫롸끫료 and 끫롸끫룎.  Basically, we split the top into four components, 

shown in Figure 2.  The mass and moments of inertia of each component are calculated, 

then added up to give the total mass and moments of inertia.  If the mass of a component 

is negative it means that this component is removed.  

Material Density (끫뢨 끫뢠끫뢴3⁄ ) 

Hardwood 0.75 

Stainless steel 7.8 

PLA 1.25 

PETG 1.27 

ABS 1.07 

4 

2 

3 

4 

2ℎ = 2ඥ끫뢊2 − 끫뢾2 

Table 1: Top material densities. 
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Component 1 is a solid wood sphere with density 끫븘끫룈끫룈끫룈끫룈 = 0.75 끫뢨 끫뢠끫뢴3⁄ .  The density of 

wood varies, but 0.75 끫뢨 끫뢠끫뢴3⁄  is a reasonable estimate for hardwood.  I have many 1” 

diameter Maple balls which I weighed at 6.3 g each, this gives a density of 0.73 끫뢨 끫뢠끫뢴3⁄ . 

For component 1, we have 𝑚𝑚1 = 43 끫븖끫뢊3끫븘끫룈끫룈끫룈끫룈  

끫롸1끫룊 = 끫롸1끫룎 = 25 𝑚𝑚1끫뢊2 

Here 𝑚𝑚끫뢬, 끫롸끫뢬𝑖𝑖 and 끫롸끫뢬𝑖𝑖 represent the mass and moments of inertia of component 끫뢬. We will 

also use 끫뢠끫뢬𝑖𝑖 for the z-coordinate of the center of mass of component 끫뢬, in this case 끫뢠1끫룎 is 

zero.  In what follows, if 끫뢠끫뢬𝑖𝑖 is not defined it is zero. 

Component 2 is the steel ball, 𝑚𝑚2 = 43 끫븖끫뢾3끫븘끫롲끫롲 

끫롸2끫룊 = 끫롸2끫룎 = 25 𝑚𝑚2끫뢾2 끫뢠2끫룎 =  −끫뢢 

Component 3 (to be removed) is a cylinder of height 2h, radius r, and density −끫븘끫룈끫룈끫룈끫룈, 

where ℎ = √끫뢊2 − 끫뢾2 𝑚𝑚3 = −2끫븖끫뢾2ℎ끫븘끫룈끫룈끫룈끫룈 끫롸3끫룊 = 𝑚𝑚312 (3끫뢾2 + 4ℎ2) 

끫롸3끫룎 = 𝑚𝑚32 끫뢾2 

Component 4 (to be removed) are two cylindrical caps between z=–R and –h, and z=h 

and R where ℎ = √끫뢊2 − 끫뢾2.  This component is very small when 끫뢾 ≪ 끫뢊 and can be 

ignored.  This component is by far the most complex to calculate, but has almost no 

effect on the results. These formulas were verified using Mathematica.  They also give 

the same values as the solid sphere when r=R and h=0. 𝑚𝑚4 = − 2끫븖끫븘끫룈끫룈끫룈끫룈3 (끫뢊 − ℎ)2(2끫뢊 + ℎ) = − (𝑚𝑚1 + 𝑚𝑚3 − 4끫븖3 ℎ3끫븘끫룈끫룈끫룈끫룈) 

끫롸4끫룊 = 𝑚𝑚420 16끫뢊3 + 17끫뢊2ℎ + 18끫뢊ℎ2 + 9ℎ32끫뢊 + ℎ  

끫롸4끫룎 = 𝑚𝑚410 (끫뢊 − ℎ)(8끫뢊2 + 9끫뢊ℎ + 3ℎ2)2끫뢊 + ℎ  

“napkin ring” term 
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Figure 3: Phase diagram of the wood flippe top (r/R vs. d/R), see [1] for group 

definitions.  A well-behaved flippe top must lie in the middle green strip. 

The total mass of the top is 끫뢴끫룂 = ∑ 끫뢴끫뢬41 .  The center of mass of the top has z-coordinate 끫븬, where 

끫븬 = ∑ 끫뢠끫뢬끫룎끫뢶
끫뢬=1

끫뢴끫뢬끫뢴끫룂 = −끫뢢 끫뢴2끫뢴끫룂  

By the parallel axis theorem, the total moments of inertia about the center of mass are 

given by a sum over the 끫뢶 = 4 components: 

끫롸끫룊 = ∑ 끫롸끫뢬𝑖𝑖 + 끫뢴끫뢬(끫뢠끫뢬끫룎 − 끫븬)2끫뢶
끫뢬=1  

끫롸𝑧𝑧 = ∑ 끫롸끫뢬끫룎끫뢶
끫뢬=1  

These values can then be used to create a phase diagram for the wood flippe top. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the phase diagram for the wooden flippe top.  The Roman numerals 

identify Groups as defined in [1], “classical tippe tops” lie in Group II.  Tops in group IIb 

have stable “intermediate states”, as defined in [1].  While these may not be a problem for 

a tippe top that flips only once, the flippe top must invert many times over a wide range of 

rotational velocities.  We don’t want the top to stop at an intermediate state, so a flippe 

top design should aim for Group IIa or Group IIc, the green region in Figure 3.  For any 

choice of r/R this gives a narrow range of d values for the flippe top. 
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Figure 4: A design for half a flippe top for 3D printing. 

Steel alignment 

pin (optional). 

The yellow region in Figure 3 indicates 끫뢢 + 끫뢾 > 끫뢊.  These tops are problematic because 

the steel ball extends beyond the large ball and may interfere with spinning. 

For example, suppose we start with a 2” diameter hardwood ball, R=25.4 mm and weight 

51.5 g.  A reasonable value for 끫뢾 끫뢊⁄  is 1 4⁄  so we select a 1 2⁄  inch diameter steel ball. 

From Figure 3 we find that a tippe top with 끫뢾 끫뢊 = 25%⁄  lies in Group IIa or IIc when 28.4% 

< d/R < 41.4%.  Thus, we should use a value of d between 7.2 mm and 10.5 mm, with 

d=10 mm marked by the ‘X’ in Figure 3. 

One important parameter not shown in Figure 3 is the time it takes for the top to invert.  

We can infer, however, that the inversion time goes to infinity at the border between 

groups II and I, so we want to be at the high end of the range 28.4% < d/R < 41.4%.     

Note that Figure 3 depends on the hardwood density used, as well as the density of the 

steel ball.  If wood of a different density is used, or the ball is 3D printed, the curves shift 

to the right or left.  The wood flippe top is scale invariant.  If a wood ball of twice the size 

is used, it should behave the same provided all other lengths are also doubled (the steel 

ball must also be twice as large and eight times heavier). 

A 3D printed flippe top 

Objects 3D printed using an FDM (Fused Deposition Modeling) printer are generally not 

solid.  It is faster to print the interior at a much lower density, the percent of interior which 

is filled is called the infill rate (f).  In order to print faster this fraction is usually as small 

as possible.  A typical value is f=15%, but in designing a 3D printed flippe top we can use 

any value between 10% and 100%. 

 

Each layer needs to supported by the layers below, making a sphere difficult to print.  

One can add “support material” which is eventually discarded, but a better option is to cut 

the sphere in half and print it in two parts.  Figure 4 shows a half-flippe top ready for 3D 

printing.  After two copies are printed, they are simply glued together and/or held together 

with metal pins for alignment.  The pins help hold the halves together, and also keep the 

central channel aligned.  If you would like to print a copy, design files can be found at [3]. 
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Figure 5: Phase diagram of the 3D printed flippe top (f vs. d/R), r/R=0.254. 

25.1% < d <37.3% 

In addition to R, r and d we now have two thickness parameters 끫룂1 and 끫룂2, as well as the 

fill ratio f.  In general, if the ball is scaled up, the thickness parameters stay the same.  

For this reason, the 3D printed flippe top is not scale invariant, although it is 

approximately so. 

 

We can calculate the moments of inertia of the top in Figure 4, but we now have nine 

components: 

1) A solid sphere of spherical shell of density 끫븘.  We will use 끫븘 = 끫븘끫뢆끫뢆끫뢆. 

2) The steel ball of radius r and z-coordinate −끫뢢. 

3) Remove a solid sphere of radius 끫뢊 − 끫룂1 and density −끫븘(1 − 끫뢦). 

4) Remove a cylinder of radius r, height 2(끫뢊 − 끫룂1) and density −끫뢦𝑓𝑓. 

5) Remove the “top lid”, a cylinder of radius r, height 끫룂1and density −끫븘. 

6) Remove the “bottom lid”, a cylinder of radius r, height 끫룂1and density −끫븘. 

7) Add back the “inner wall”, a hollow cylinder with outer radius 끫뢾 + 끫룂1, inner radius r, 

height 2(끫뢊 − 끫룂1) and density 끫븘(1 − 끫뢦). 

8) Add the “base plate” (doubled), a hollow cylinder with outer radius 끫뢊 − 끫룂1,inner 

radius 끫뢾 + 끫룂1, height 2끫룂2 and density 끫븘(1 − 끫뢦). 

9) (optional) Add several steel alignment pins (see Figure 4).  These hold the top 

together but also increase 끫롸끫룎. 

 

We note that components 4-8 are not exact, but assume 끫룂끫뢬 ≪ 끫뢊. The phase diagram of 

the PLA tippe top with variable infill is shown in Figure 5. The f=100% top line in Figure 5 

should correspond to the r/R=0.254 line in Figure 3.  It doesn’t match because PLA has a 

higher density than wood. 
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Figure 6: Three sizes of 3D printed flippe tops. 

The largest one has an equatorial groove for a string. 

 

I made many copies of the flippe top with the 

parameters in Table 2 (design files are 

available at [3]).  In addition, I also scaled the 

entire top up by a factor of 5 4⁄  and down  

by a factor of 3 4⁄ . All of them are able to 

execute multiple flips, as many as seven flips 

in the case of the smallest version.  Figure 6 

shows all three sizes. 

 

Table 3 shows specifications for all three 

sizes of flippe top in Figure 6.  The measured 

weight of each top is within 1 g of the Table 3 values, giving us confidence in our model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each time the top flips, some of its rotational kinetic energy is used to raise the steel ball 

by an amount 2d.  Starting the top spinning by hand there is a limit to the initial velocity of 

the top, in the neighborhood of 끫룆끫뢴끫뢴끫룊 ≈ 125 끫뢠끫뢴 끫룀⁄  speed of the top circumference.  If all 

the top’s rotational energy is used to raise the ball, the maximum number of flips which 

can be executed is 끫뢶끫뢴끫뢴끫룊 = 12 끫롸끫룎끫븨2𝑚𝑚2끫뢨(2끫뢢) = 끫롸끫룎끫룆끫뢴끫뢴끫룊24𝑚𝑚2끫뢨끫뢊2끫뢢 

Inserting values for each size top gives the values for 끫뢶끫뢴끫뢴끫룊 given in Table 3.  We find that 

smaller top and the wood top are capable of the most flips.  I have uploaded two movies 

of tops in action on youtube [4, 5]. 

 

 

 

Parameter Value 

R 25.0 mm 

r 6.35 mm = ¼ inch 끫룂1 0.9 mm (2 perimeters) 끫룂2 1.1 mm (7 layers) 

f 15% 

d 9 mm (d/R = 36%) 끫븘 1.25 끫뢨 끫뢠끫뢴3⁄  (PLA) 

Table 2: Flippe top parameters. 
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Table 3: Flippe top specifications for different sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to get a faster initial rotation, a string can be wrapped around the top. 

 

Observations of high-speed tops show a new phenomenon: the top performs one flip, but 

then the steel ball does not drop down (see the video [5]).  The inverted top then spins 

until the rotational velocity drops below a critical value when the steel ball drops and 

flipping continues.  It would be interesting to calculate this critical rotational velocity. 

 

Summary 

We have calculated design parameters for a (solid) wood flippe top and a 3D printed 

flippe top.  I have printed many sizes of the 3D printed version, using many different 

values for d as well as the infill percentage f.  The best versions use parameters given in 

Tables 2 and 3. 

 

References: 

1) M.C. Ciocci, B. Malengier, B. Langerock and B. Grimonprez, “Towards a Prototype 

of a Spherical Tippe Top”, Journal of Applied Math doi:10.1155/2012/268537 

2) M. C. Ciocci and B. Langerock, “Dynamics of the tippe top via Routhian reduction”, 

International Journal of Bifurcation and Chaos, V 12, no. 6, pp.602-14, 2007. 

3) https://www.thingiverse.com/thing:3990145 

4) https://www.youtube.com/watch?v=aO6ZofZ5dos (movie of a small flippe top) 

5) https://www.youtube.com/watch?v=3E_Ffhsj5mI (movie of a regular flippe top) 

 

Parameter Base model 5/4 scale 3/4 scale Wood version 

2R (ball diameter) 5 cm 6.25 cm 3.75 cm 2 inch 

2r (steel ball diam) 1/2 inch 5/8 inch 3/8 inch 1/2 inch 

d 9 mm 11.25 mm 6.75 mm 10 mm 끫뢴2 (steel ball weight) 8.4 g 16.3 g 3.5 g 8.4 g 끫뢴끫룂 (total weight) 32.6 g 58.5 g 15.7 g 55.1 g 끫븬 끫뢊⁄  (eccentricity) 9.2% 10.1% 8.1% 2.0% 끫롸끫룊 = 끫롸끫료 73.0 끫뢨 끫뢠𝑐𝑐2 199.6 끫뢨 끫뢠𝑐𝑐2 20.3 끫뢨 끫뢠𝑐𝑐2 124.6 끫뢨 끫뢠𝑐𝑐2 끫롸끫룎 75.5 끫뢨 끫뢠𝑐𝑐2 204.4 끫뢨 끫뢠𝑐𝑐2 21.4 끫뢨 끫뢠𝑐𝑐2 133.3 끫뢨 끫뢠𝑐𝑐2 

printing time 2.8 hours 4.3 hours 1.5 hours years to grow! 끫뢶끫뢴끫뢴𝑚𝑚 6.4 4.5 10.1 9.8 
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Abstract 
 

I have developed a set of four spinning tops based on four of the most important mathematical constants [1]: φ, π, e 

and i. The tops are quite elegant, have different topological shapes and have unusual dynamical properties. Here, I 

discuss each of them separately, as well as a mathematical relation that unites them together. 
 

PhiTOP
®
 Development 

 

In 2015, I did an experimental study of the problem of the rise of the center of mass of spinning objects, 

focusing on ovoids (eggs) and prolate ellipsoids. I presented the first results of this study at a meeting of 

the American Physical Society in April 2015. By the Spring of 2015, I had found experimentally that the 

“optimal” prolate ellipsoidal shaped object (optimal in the sense that it could be spun up easily, rise 

quickly and stand erect for a long time) has a ratio of major to minor axes of about 1.6. I decided to have 

such objects fabricated in various materials, chose the major to minor axis ratio to be equal to the “golden 

mean” (“golden ratio”) φ  ~ 1.618…, and named the resulting object the “PhiTOP
®
” or “φTOP

®
”. The 

PhiTOP
®
 was first presented in a paper entitled “The PhiTOP: A Golden Ellipsoid” at the Bridges 

conference on art and mathematics held in July 2015 [2]. More about the PhiTOP
®
 can be found at: 

http://www.thephitop.com, in reference [3] as well as in the description in U.S. patent # 9,561,446. 
 

PiTOP® Development 
 

During 2016 and 2017, I studied the physics of spinning and rolling coins and flattened disks 

(right circular cylinders). As in the case of spinning egg-shaped objects, there is a lengthy literature of the 

physics of spinning coins that dates back at least to the 19
th

 century. As with the PhiTOP
®

, I conducted a 

series of experiments to determine the “optimal” coin or disk (that is, one that spins and precesses for the 

longest time). The maximum duration spinning and rolling (precession) time was found to depend mainly 

on the ratio of the disk radius r to disk thickness t. I found experimentally that with r/t ~ 3 one produced 

the longest duration motion. I then chose r/t to be equal to π ~ 3.1415… and named the resulting object 

the “PiTOP
®

” or “πTOP
®

”. Its volume V is exactly equal to r
3
. The design that appears on one surface 

consists of a spiral containing the first 109 digits of π along with the Greek letter π in the middle. The 

PiTOP
®

 was first presented at the “Gathering for Gardner” (G4G13) event in Spring 2018. More about 

the PiTOP
®

 can be found at: http://www.thepitop.com. 
 

 
Figure 1 (from left to right): (a) brass φTOP

®
; (b) brass πTOP

®
; (c) brass iTOP; (d) brass eTOP. 
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eTOP Background 
 

Having designed both the PhiTOP
®

 and the PiTOP
®

, I decided that the world also needed an 

“eTOP”. In this case, no optimizing physics experiments were done. I simply chose to produce an oblate 

ellipsoid with the ratio of diameter d to maximum thickness t having d/t = e ~ 2.718… It can be spun like 

a coin. While spinning in its upright position, it presents a visible cross-section quite similar to that of the 

upright spinning PhiTOP
®

! As it settles down, it gives rise to beautiful Lissajous figure like reflections. 
 

iTOP Background 
 

Finally, I felt that the world also needed an imaginary top or “iTOP”. After pondering the 

question of what such a thing might be and look like, I decided that a “real” imaginary top was an 

unlikely proposition (though check Nick Bantock’s ideas about such things in his book “The History of 

Imaginary Spinning Tops” [4]). Therefore, I devised the “Inverting Ring Top”, or “iTOP”, a quasi two-

dimensional “tippe-top” to join the other three “Sirius Enigmas” tops. By combining the definition of the 

golden mean 1/φ - φ = -1 with Euler’s equation: e
iπ = -1 one has a relation connecting e, i, π and φ: 

          e
iππ = 1/φφ  - φφ ..  

 
Figures 2: A physical/mathematical relation between all of the Sirius Enigmas Spinning Tops. 

 

Summary 
 

In conclusion, I have devised a set of four unique spinning tops, each with its own novel physical 

and mathematical properties. Each has a longest dimension of 2 inches. When made in brass, each weighs 

between 4 and 8 ounces (though some of them have been produced in many other materials including 

aluminum, copper, titanium, bronze, stainless, steel, glass, plastic and wood). The four different types of 

“Sirius Enigmas” spinning tops can be thought of as being related through a mathematical identity.  
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Global warming is a plot manufactured by 
a global community of scientists. United 
Nations panels deliberately understate 
the radiation levels of the Fukushima and 
Chernobyl disasters. US media outlets con-
trive “fake facts” to refute Tweets of Don-
ald Trump. Venal politicians are behind 
Ebola and other epidemics.

Groundless conspiracy theories are 
now an established feature of the political 
landscape. They resemble epidemics them-
selves, appearing from nowhere, spread-
ing like wildfire, disrupting normal life, 
and being all but impossible to stop. They 
threaten democracy by poisoning the abil-
ity of voters to lucidly deliberate issues of 
human life, health and justice.  

In her recent book Democracy and 
Truth, the University of Pennsylvania his-
torian Sophia Rosenfeld argues that con-
spiracy theories thrive in societies with a 
large gap between the governing and the 
governed classes. Such conditions, Rosen-
feld writes, allow some of the governed 
to reject the advice of experts as out of 
touch with “the people”, and to create a 
“populist epistemology” associated with 
an oppositional culture.

Populists, Rosenfeld continues, “tend to 
reject science and its methods as a source of 
directives”. Instead, such people prefer to 
embrace “emotional honesty, intuition and 
truths of the heart over dry factual verac-
ity and scientific evidence, testing and cre-
dentialing”. Modern science accentuates 
the gap between experts and non-experts, 
making it possible for populists to interpret 
“factual veracity” as tainted.

Galileo’s gap
In my book The Workshop and the World: 
What Ten Thinkers Can Teach Us about Sci-
ence and Authority, I argued that this sci-
entific gap emerged with Galileo. Writing 
in his 1623 book The Assayer, Galileo used 
a striking image to defend his seemingly 
heretical studies of nature. The book of 
nature, he wrote, “is written in mathemati-
cal language, and the symbols are trian-
gles, circles and other geometrical figures, 
without whose help it is impossible to com-
prehend a single word of it”. 

The use of mathematics creates a rift 
between those unable to understand this 
special language and those who do, mak-

ing it easy for the former to distrust the lat-
ter. Galileo’s Gap, as I call it, has widened 
in size and consequence in the four centu-
ries since then, feeding the frequency and 
severity of conspiracy theories.

Hard to believe, but I received hate mail 
after The Workshop and the World came 
out. Some concerned what I’d written 
about The Preaching of St Paul – a 1649 
painting by Eustace Le Sueur that now 
hangs in the Louvre museum in Paris. 
This dramatic and imposing work shows 
St Paul looming above a pile of burning 
books, some with geometrical figures on 
their pages. The not-so-subtle intent was 
to portray heretics who read the book of 
nature as dangerous criminals.

Contemporary conspiracy theories, I 
wrote, show that St Paul is back.

My critics were furious. The painting is 
not about Galileo, they chastised me, but 
a passage in the Book of Acts 19:19, where 
St Paul’s preaching prompted mystics to 
have “brought their books together, and 
burned them”. Besides, the critics added, 
this issue can be settled factually by not-
ing that the figures on the pages of the 
burning books resemble nothing found in 
maths texts. What’s more, no trace exists 
of Le Sueur’s intent, or that of the religious 
authorities who commissioned the paint-
ing. I must surely therefore be part of a 
conspiracy to slander the good saint. 

I responded that of course the figures 
in the burning books were not in modern 
maths texts; they are what a religious fire-
brand of 1649 might think geometrical fig-
ures looked like. I also said that no factual 
information about the painting’s creation 
could help us to understand its meaning, 
which can be understood only in the light 
of its historical context.

Le Sueur, a religious painter funded 

by church commissions, composed the 
work at a time when the most fundamen-
tal issue confronting the Catholic Church 
was that its claim to have the sole author-
ity to interpret the Bible was being torpe-
doed by growing evidence in support of 
Galileo’s mathematically based findings. 
Only that explains why a devout Catholic 
painter would devote enormous time and 
resources to create a 4 m high work about a 
handful of words in the Bible that mention 
book-burning – and then paint geometrical 
figures on the books’ pages.

In a similar vein, the playwright Arthur 
Miller did not compose the 1953 play 
The Crucible because he had an interest 
in the Salem witchcraft trials. He did so 
to address the persecutions of supposed 
communist subversives taking place in the 
US in the 1950s. I probably did not con-
vince my respondents. But their accusa-
tions that I had joined an anti-Christian 
conspiracy stopped. 

The critical point
Modern anti-science conspiracies differ 
from their 17th-century antecedents, which 
emerged principally from the Church. Con-
temporary sponsors of conspiracy theories 
are multiple, spread not by preachings and 
paintings but by the Internet, and are ener-
gized by the ability to self-select informa-
tion. But then, as now, conspiracy theories 
are not a sign of irrationality. Instead, they 
spring from the attempt by non-experts 
to make sense of often overwhelming and 
contradictory information based on per-
sonal values, available evidence, whom one 
trusts, and experience. 

To reduce the impact of conspiracies, 
there’s little point quoting mainstream 
experts, citing scientific papers, appeal-
ing to facts, or even teaching more science, 
for all these things will be said to belong 
to the conspiracy. Far more effective is to 
provide people with better tools to make 
sense of their personal, political and social 
experience. Yet the disciplines that culti-
vate these interpretive tools, collectively 
called the humanities, are largely having 
their resources redirected to the sciences. 

Ironically, the dazzling and visible suc-
cesses of the 21st-century sciences are 
overshadowing and undermining the 21st-
century humanities that ground the author-
ity of the sciences themselves.

As we enter the third decade of 

the 21st century, why – asks 

Robert P Crease – do conspiracy 

theories still abound?

Critical Point Conspiracy theories

Deep question Why do some people still think global 

warming is a conspiracy?

S
h

u
tt

e
rs

to
c
k
/

B
e

rn
h

a
rd

 S
ta

e
h

li

Robert P Crease is chair of the Department of 

Philosophy, Stony Brook University, US, e-mail robert.

crease@stonybrook.edu. His latest book is The 

Workshop and the World: What Ten Thinkers Can 

Teach Us About Science and Authority (WW Norton)
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FIBONACCI TURBINE 
and

Cone-puter for Cone-tinued fraction by Cone-pass

Akio Hizume

Geometric Artist

akio@starcage.org

www.starcage.org

FIBONACCI TURBINE and FIBONACCI HELICOPTER

Just after G4G13 (2018), I invented the ORIGAMI Fibonacci 

Turbine (Patent No. 7013094)[1].

I have been working with the Phyllotaxis (Golden Angle)  for 30 

years, and this is my latest work.

It is easy to make like ORIGAMI. There is no shaft, so there is no 

weak. Any blade is not on the same plane, the loss of lift is low.

The actual spin and flight can be seen below.

 https://youtu.be/8naOjOPWK5Q

FIBONACCI  TORUS and KNOT  (2019)

Make long Origami Fibonacci Turbine and join the ends to 

form torus or knots.

They have a very unique rotational movement.

 https://youtu.be/LdnvxN4UUfs

FIBONACCI  WHEEL

I made the Fibonacci Turbine of bamboo. 

It rolls well without circular tyres.

I name it as Bamboo Fibonacci Wheel.

 https://youtu.be/4wc0qpLRuH8

The wheel's footprint can be used as a musical score to play four 

different types of music related to quasiperiodic music.

 https://youtu.be/8-kWbufOPsg

GENERALIZED  FIBONACCI  TURBINE

Origami Fibonacci Turbine can be transformed into any curved 

surface, including cone, parabola, catenary, hyperbola and ellipse, 

etc...

In addition, turbines other than golden angle can be freely designed 

based on any real number of its continued fraction.

In particular, the use of parabola Fibonacci Turbine reproduces 

plant petals excellently.
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Logo for G4G14 designed by Akio Hizume

The ORIGAMI Fibonacci Windmill designed based on phyllotaxis that consists of 14 

similar triangles using a paper with different colors on the front and back.

It also becomes a pin badge.

k�+0

k

These are some variations of the 

Fibonacci Turbine. 

They are distributed as my G4G14 

Exchange  Gift.

This pin badge is reversible.

G

G’

CONE-PUTER for CONE-TINUED FRACTION by CONE-PASS

The basic figure composing the Fibonacci Turbine is the Golden Angle isosceles triangle.

It is impossible to construct the Golden Angle using only a ruler and compass, and it has been a long-standing question how 

plants acquire the Golden Angle.

In 2020, I found that the Golden Angle could be constructed exactly by the operation of making a cone from a circle with a 

slit in it, which I named the �Cone-pass� as a new tool for construction[2].

In 2022, it was found that this method can be used to construct not only Golden Angle, but also any real number of angles.

It was also found that the method is closely related to continued fraction.

The preprint saved to Reseachgate[3] will be published in the G4G14 Exchange Book.
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Cone-tinued fractions

Golden Angle isosceles triangle
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Does Conway’s “Game of Life” predict that  

the speed of light is constant in the real world? 

“Gathering 4 Gardner 14” presentation 
10 April 2022

 

James D. Weinrich

jimwsandiego@gmail.com

jweinric@sdsu.edu

619-920-8332

The kind of feedback I need: Please tell me whether these ideas are (1) wrong, (2) true 

but trivial, (3) good for explaining concepts in textbooks, (4) new and novel but not 

very important, or (5) new, novel and important. Thank you!

Abstract

Conway’s Game of Life needs no introduction to fans of Martin Gardner.

Numerous examples exist in which a GoL “spaceship” object sends out smaller 

objects (“gliders”, etc.) that move away from the generator at a constant speed. That 

speed is set by the underlying nature of the GoL’s generations, because each such object 

can move no faster -- generation to generation -- than the unit distance built into the 

GoL model itself. In fact, the maximum such speed of propagation is called c or “the 

speed of light” in GoL terminology.

In a typical computer running a GoL in a lab, the unit of time in the GoL of course 

has no fixed relationship to the unit of time marked on the lab’s clock on the wall. If the 

lab personnel were to double the rate of GoL generations (relative to the clock on the 

wall), the speed at which a GoL glider moves across the screen is also doubled (relative 

to that clock), but within the GoL universe itself, there is no change in speed.
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Might this phenomenon actually apply in the real world of spacetime, and its 

actual speed of light? 

The very concept of spacetime encourages us to think of time as a literal 

dimension. If so, what is the multiplier used to convert units of time to units of 

distance? The natural conversion factor would be to set the unit of time to be the Planck 

time, and to set the unit of distance to be the Planck distance; the conversion factor 

would be the speed of light.

Now imagine that the universe is the surface of some hypervolume, which is 

expanding -- being laid down -- along the time dimension. The “future” is akin to some 

kind of gas: an energy field with no structure or organization. The “past” is akin to a 

solid structure that has previously condensed out of the gas. The “present” is the 

condensing layer between this past and the future. The present is a layer of spacetime, 

which contains matter in particular positions. The layer also has waves that can 

transmit energy by moving in the various spatial directions.

A single assumption leads to the prediction that the speed of light in the real 

universe is a constant, just as it is in the GoL. The assumption is that a particle in layer t 

(for present time), at position coordinate X (in any given spatial dimension) can at time t 

+ 1 be positioned at X, X – 1, or X + 1. A bit of the energy from the future “gas” can 

condense into the layer of the present moment only by latching onto a particle in the 

Present layer that is positioned at, or next to, the point at which the condensation 

occurs.

If we were to imagine that this hypervolume exists in some uber-being’s computer 

lab, for those of us living in the hypervolume, it doesn’t matter how fast the Planck-

thickness layers accumulate.

If light is something that undulates on the surface of this expanding spacetime 

solid, then it can propagate through space no faster than it can move from layer to layer 

of time. Each additional time layer permits no more than one Planck step in any spatial 

direction. Regardless of whether we regard light as a wave or as a particle, its angle 

through spacetime can never be more than 45° away from the path of a stationary 

object.

Finally, the model sheds light on the wave-particle duality nature of matter and 

energy. A “particle” is a kink in the outermost layer of spacetime that stays in place, or 

moves one unit away, as waves and events in the condensing layer progress. In the 

condensing fluid, such a kink is a wave; once condensed, it’s a particle whose location 

can be known to within a Planck length.
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Introduction

For several years, the consensus of astronomers has been that the universe is, in the 

present era, expanding at an accelerating rate. This consensus was based on well-

founded empirical data that seemed to compel such a conclusion. A report by Milne et 

al. (2015) concluded that the universe’s expansion is slower than this previous 

consensus suggested. If this revised conclusion is correct, then now may be a good time 

to consider models that feature or require a constant rate of expansion of the universe.

If a universe expanding with zero acceleration is indeed consistent with 

observation, then some simple postulates about the nature of time and the fabric of 

spacetime lead to answers to two commonly-asked questions: (1) Why is the speed of 

light a constant? and (2) Why can nothing travel faster than the speed of light (or, as will 

be argued, the speed of gravitational waves)? This paper explores an extremely simple 

model of an expanding universe that straightforwardly yields answers to these two 

questions. 

As it happens, John Conway’s Game of Life (GoL) also has a maximum travel speed

—for reasons that are very similar to the reasons proposed in this paper for the real 

world. The purpose of this paper is to set out this theory of the universe, and use the 

GoL as an illustration of many of its principles.

This model has several fundamental predictions. It suggests why time is the 

physical parameter that we can measure with the greatest degree of accuracy, and 

explains how the forward arrow of time is inextricably linked to the expansion of the 

universe, why the rate of expansion seems to be exactly what is needed to avoid 

collapse, why spacetime is so exceedingly geometrically flat (without needing to 

postulate a special mechanism for a period of hyperinflation), and why light cannot 

complete a circumnavigation of the universe. Moreover, the model predicts that the 

universe is prevented from collapsing back into a singularity by virtue of a mechanism 

that would emerge in equations as a parameter related to dark energy. Finally, it 

explains a fundamental difference between hadrons and bosons, and may incidentally 

explain why matter predominated over antimatter in the early universe.

John Conway’s “Game of Life”

There is an earthly universe in which there is a maximum speed of travel—a speed 

that follows from the laws that underlie the passage of time in that universe. That is 

John Conway’s Game of Life. In a GoL universe, each particle at any given point in time 

contributes to the creation of a particle at adjacent points in the next point in time. GoL 

fans are familiar with arrays of points that generate, and/or propagate, so-called gliders 

that (when animated) move through GoL space at a fixed maximum speed. No GoL 

object can travel faster than this, because the particles that make up the glider at time t 
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can only influence slots in GoL space at time t + 1 that are one pixel away from it at time 

t. Indeed, this speed, in GoL terminology, is called the “speed of light”.

The purpose of the present paper is to explore a model of the expanding universe 

that has a maximum speed that is almost perfectly analogous to this mechanism. 

Nothing can travel faster than the speed of light in our universe because each moment 

in time is a layer in an expanding universe, and each bit of matter in layer t of that 

universe can move no more than one layer’s worth away in layer t + 1.

The Postulates

The theory follows logically from a small number of postulates about the nature of 

spacetime. Many of these have been previously posited (and long ago) by other 

scientists. However, one key postulate (number 4) appears to be novel. In combination 

with the others (especially postulate 5), it explains the constancy and the maximality of 

the speed of light.

• Postulate 1: Space and time are inextricably united in a fabric-like 

substance called spacetime

This is, of course, the point of view of Einstein’s special theory, Minkowski space, 

and the Lorenz transformation equations, and needs no elaboration here. Spacetime’s 

fabric-like nature is likewise widely appreciated.

• Postulate 2: The time dimension is exactly like the spatial dimensions, yet 

is different

This is also generally appreciated, but a certain aspect of it needs emphasis. Like 

many others, the proposed theory presumes that spacetime is a real thing—not merely a 

useful analogy—and that the time dimension is in some ways exactly like the space 

dimensions in a deep, tangible, and probably literal way. 

To fully appreciate the model, the units used to measure space and time should be 

identical. But this principle (also a familiar one) goes beyond the use of a distance 

measure such as light-years. One ought to be able to say either that “the ball moved 

300,000 km to the north” or “the ball moved one sec to the north”. Likewise, one should 

be able to state that a ball that appears to us to be at rest in space either “moved 1 sec 

into the future” or “moved 300,000 km into the future”.

This postulate is scarcely controversial in and of itself. The key is that it encourages 

us to equate (in Postulate 4) the speed of light moving through space with the speed of 

objects moving through time.
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• Postulate 3: Planck distances and Planck times have a fundamental reality

Something fundamentally important (and very strange, from the point of view of 

our limited experience of the macroscopic world) takes place at Planck times and Planck 

distances. The time it takes light to travel a Planck distance is a Planck time (in accord 

with Postulate 2). If there is any granularity, quantization, or fundamental minimum 

distance in the structure of space (and by extension, the measurement of location), there 

is an equivalent granularity, quantization, or fundamental minimum time—and vice 

versa. If space and time are one, then so are Planck distances and Planck times.

• Postulate 4: The expansion of the universe is—is—the progression of 

time, and thus must always be experienced as constant by objects in 

spacetime

This is the key assumption. Like sheets of paper accumulating into a ream, like 

acetate cels piling up to create an animation or flipbook, like a mineral seed planted in a 

hypersaturated medium growing into a crystal, like a blob of gelatin slowly solidifying 

as it cools into a bigger blob of gelatin, like a layer of living coral (on the surface of a 

growing ocean floor) that builds its present life on its dead calcium skeleton below the 

surface, the expansion of the universe into the time dimension is time. The universe as 

we experience it consists of the outermost Planck layer of that crystallized product, a 

layer that is constantly changing as it grows. The passage of time is the experience of 

motion in the direction of the time axis, with objects as we experience them at each 

moment existing only in that Planck-thickness layer. The universe expands by 

accumulating layers, each of one Planck time/distance in thickness.

Someone at rest in our universe, but by necessity moving along the time axis, can 

observe and measure oscillations in local objects; we call those oscillations “time”. If 

someone moves along a space dimension (also through time), they travel on a diagonal 

path through spacetime, but they will still observe and can measure oscillations that 

they will experience as “time”. And as far as they are concerned in their frame of 

reference, their gelatin-surface world is still growing (i.e., moving through time) layer 

by layer, with each layer being just as thin and Planck-like as any other. Thus, an object 

moving along a diagonal spacetime path is experiencing the expansion of the universe 

at the same constant rate as everyone else.

In this view, it is impossible (nonsensical, actually) to observe that the universe is 

expanding at an accelerating rate. Imagine being a cartoon character who exists by 

virtue of being a drawing on an acetate cel, and imagine a clock on the wall of that 

character’s environment. The godlike creatures that produce the cels, stack them, and 

flip through them to create an animation can produce each cel on their own schedule in 

what might provocatively be called godtime. It is irrelevant how long it takes for these 
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powerful creatures to draw each cel, and it doesn’t matter how quickly the flipbook’s 

pages are flipped in godtime; as far as the residents of the tooniverse can tell, a clock on 

their wall ticks at a constant rate.

Of course, there is no need to invoke a godlike animator. John Conway’s Game of 

Life is an example of an automatic evolution-like unfolding of a series of animation-like 

snapshots that resembles a growing, moving organism when animated (and which is 

limited in the way about to be proposed in Postulate 5).

The analogy to animation cels (or an accumulating ream of paper) presumes that 

each layer is distinct from the previous layer, and from the next layer across different 

spatial locations. To the contrary, perhaps the accumulation is more like the 

condensation of what might be called a gelatin crystal, in which it is not clear exactly 

which molecules in the past constitute a given layer. In this case, an entity on the surface 

can move diagonally through gelatin spacetime, and experience its own, somewhat 

different, set of layers.

• Postulate 5: From time t to time t + 1, measured in units of Planck time, 

matter and energy can move no more than one Planck length in any 

direction

This is the other postulate that has been overlooked, although many scholars 

presume nearly the same thing when they assume that c should be the conversion factor 

between units of time and units of length.

As layer t + 1 is about to be deposited on top of layer t, a bit of matter-energy in 

layer t, at spacetime coordinates (x, y, z, t), can move no more than one Planck length in 

any spatial dimension as the next layer of Planck time is deposited. That is, something 

at (x, y, z, t) can move or copy itself into the region [x ± 1, y ± 1, z ± 1, t + 1]—and no 

further. (As mentioned above, this situation is mirrored in Conway’s Game of Life.) If a 

particle, for example, were to move two or more Planck lengths away between times t 

and t + 1, it couldn’t be the same particle. Likewise, if a wave (or other disturbance) on 

the surface of the expanding universe were to move two or more Planck lengths away 

between times t and t + 1, it wouldn’t be perceived as the same wave. Matter and 

energy at one point in time directly and locally cause the arrangement of the next layer of 

time.

• Postulate 6: Bosons are constantly moving waves in the fabric of 

spacetime

Gravitational waves may be (or, arguably by definition, are) waves in the fabric of 

spacetime. If so, they must propagate at the same speed in space as the expansion of the 

universe does in time. Einstein seriously considered (and then lost interest in, for 

7

reasons that are unclear) the notion that light is also some kind of undulation in the 

fabric of spacetime (Einstein, 1920), even going so far as to use the word “ether” in 

connection with that fabric. Of course, the idea of a luminiferous ether is inconsistent 

with observation, but those famous observations pertain to the hypothesis that “ether” 

is a substance that exists in spacetime. To the extent that Einstein’s theory (and the 

present theory) include a concept that resembles ether, it is not in spacetime: it is 

spacetime.

Instead of saying that the speed of light is a speed limit for everything in the 

universe, it would be more primary to declare that the speed limit is the speed of 

gravitational waves. Logically speaking, the insight that nothing travels faster than the 

speed of light is secondary to the insight that nothing travels faster than the 

propagation of gravitational waves. It follows trivially that light does not travel faster 

than that speed. 

However, there is a sense in which objects can travel at the speed of light—and 

always do. An object may be at rest in the three dimensions of space, but that object is 

nevertheless traveling through spacetime. Indeed, the point of view of the present 

theory is that all objects travel through time, literally, at the speed of light.

At the risk of being overly epigrammatic, it might be said that space travels through 

time at the speed of light, and light travels through space at the speed of time. These are 

merely restatements of the postulate that space and time must be measured with the 

same units.

• Postulate 7: Hadrons are movable, semi-stable structures in the fabric of 

spacetime

A simple knot loosely tied in a rope can be moved from point to point along the 

rope by inserting one’s thumb into the loop of the knot, moving one’s hand left or right, 

and allowing the rope to slip around the thumb (taking care to avoid pulling the knot 

tighter). Because the word “knot” has a very specific topological definition that is 

contrary to this lay concept of a knot, I will use the word “kink” to refer to the concept 

of a knot-like disturbance in the (otherwise) smooth hypersurface of the expanding 

universe. Although the present theory is agnostic on the question of the reality of 

strings, aficionados of string theory are welcome to think of kinks as being composed of 

vibrating strings.

Kinks can be inside or outside of the expanding surface of the fabric. On the 

outside, they are postulated to be matter; on the inside, they are antimatter. When they 

collide, they annihilate each other (by unkinking each other, symmetrically) and release 

the potential energy they had stored. By their nature, even when motionless, they 

disturb and distort what would otherwise be a perfectly smooth, expanding universal 
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hypersphere. Perhaps this distortion (like that of a kink in a rope) is smoother when 

viewed from one side than the other.

When a kink moves, it carries this distortion with it. To the extent that this 

distortion occurs along the time dimension, a moving kink resembles a wave—albeit an 

irregular one, and one that does not have a tendency to propagate in all directions (as 

most waves, such as sound and light, do).

• Postulate 8: Gravity is the force that glues one layer of spacetime to the 

next, by virtue of its strength at Planck distances and in the time 

dimension

Gravity is often described as the weakest of the fundamental forces of nature, but 

gravity is not a weak force at Planck distances (Physics Stack Exchange, 2015). The other 

fundamental forces (electromagnetic, strong, and weak) behave according to equations 

that can operate only on the surface of expanding spacetime. Only gravity’s equations 

permit it to exert force from one layer to another. The theory postulates that a particle 

(kink) that exists in layer t of the expanding hypersphere attracts condensation (of some 

sort, in some sense) in layer t + 1, and that the two particles are bonded to each other by 

the force of gravity otherwise operating outside of our awareness.

• Postulate 9: Hadrons and bosons are fundamentally dissimilar

According to Postulate 7, hadrons are particles, and are localized deformities 

(kinks) embedded in the surface of spacetime. Thus, when they move, they have some 

wavelike properties, but they are not fundamentally waves. Kinked, they contain 

potential energy. Unkinked, they release that energy, which can then be re-kinked or 

completely released as moving undulations. 

In everyday experience, a fundamental property of what we call “particles” is that 

they can move or they can stand still. You can hold them in your hand, or you can 

throw them away. If they stop moving through time, they disappear; we say they are 

destroyed, or converted into pure energy.

How can you hold a moonbeam in your hand? You can’t. Bosons, by virtue of their 

wavelike nature (Postulate 6), must move through space. If bosons stop moving, they 

disappear; we say they are absorbed. Moreover, applying the time dilation equations to 

bosons results in the conclusion that bosons do not experience the passing of time. 

Indeed, their motion across the hypersurface of the expanding universe does not leave 

any tracks, and in that sense they are timeless. Particles, on the other hand, leave a 

record of where they have been (see Postulate 10).

Again at the risk of appearing overly epigrammatic, note that hadrons must move 

through time but need not necessarily move through space, whereas bosons must move 
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through space but do not experience the passing of time. 

• Postulate 10: The universe began not with a big bang but with a little 

plop

The simplest hypothesis about the earliest moment in the history of the universe is 

that it began as something no larger than an entity of Planck-sized dimensions—a seed, 

if you will. (This is termed the Planck epoch.) The present theory imagines that the 

universe then expanded as a 4-dimensional hypersphere around this seed, and that (as 

previously mentioned) our experience of the universe consists of the 3-dimensional 

surface of that hypersphere combined with a perception of the passage of time. Each 

unit of matter on that surface attracts another unit of matter that “condenses”, in a 

sense, from the formless energy soup of the surrounding future. One can think of this 

energy soup as a field: perhaps a Higgs field.

Like a special type of coral that lives and grows atop an expanding ocean floor, the 

universe’s present state is displayed on the surface, and its history is recorded beneath 

the surface. The cosmos is, in this view, the surface of a kind of crystal—a solid (or at 

least non-fluid) structure that possesses a particular past and an uncertain future. 

Whether this imagery can be converted into equations that can be tested against 

experiment is an exercise for the future.

Deductions

Accuracy of time measurement

If the progression of time is by its nature constant (Postulate 4), it might make sense 

that the measurement of time is the physical parameter that can be measured to the 

highest degree of precision. This seems to be the case. Lombardi (2002, figure 17.1) 

indicates, for example, that seconds can be measured to an accuracy of 10-15, whereas 

the next most-precisely-measurable quantity is length (to 10-12).

The rate of expansion appears to be precisely regulated

If the rate of expansion of the universe constitutes time, there need be no 

puzzlement about why the universe’s expansion seems to be precisely what is needed to 

avoid eventual gravitational collapse. It also explains why the universe has not already 

expanded so quickly that stars could not have formed and entropy would be the 

universe’s most obvious property. There is no need to invoke the anthropic principle or 

multiple universes—or godlike creatures.

Dark energy (but not necessarily dark matter?)

Dark energy is postulated as a force that causes matter to repel other matter, and 
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thus counteracts what has been thought to be a natural tendency of the universe to 

contract as a result of gravitational attraction. In the present model, there is no need for 

such a specific force operating in the spatial dimensions. What keeps the universe 

expanding is the fact that the layer of the hypersphere created at time t + 1 rests, almost 

literally, on the layer created at time t. The matter in layer t triggers the condensation-

like creation of layer t + 1. Layer t continues to exist forever. According to Postulate 8, 

gravity itself is the force that binds matter in each layer to matter in subsequent and 

preceding layers. The word “bind” correctly suggests an attraction, but the idea of a 

repulsion is implicit in it; two particles that are glued together cannot separate, but they 

also do not collapse into one.

If one were to write equations that describe this condensation/accretion process, 

dark energy might emerge as a parameter or variable that appears when such equations 

are restricted to the domain of the expanding hyperspherical surface. 

Dark matter, on the other hand, does not specifically appear in the present theory. 

Whether or not it exists is not addressed by the theory. Either alternative is possible.

The predominance of matter over antimatter

If an inflated balloon is coated, inside and outside, by a layer of particles of uniform 

size, slightly more particles can be fitted onto the outside than the inside of the balloon. 

If spacetime has (or had) a positive curvature, might this account for the predominance 

of matter over antimatter? This deduction seems likely in the light of Postulate 7. If 

there was a time in the history of the universe when spacetime was positively curved, 

and if a highly energetic process generated kinks on the outside and inside of this 

hyperspherical surface up to their respective volumetric limits, somewhat more kinks 

would be created outside than inside. If, as the hypersphere grows and its contents cool, 

the indiscriminate generation of kinks were to cease, then those inside and outside of 

the surface would annihilate each other. The result would be a universe in which the 

“matter” kinks (outside) numerically exceed and destroy the “antimatter” kinks (inside)

—but only by a small percentage.

Photons are their own antiparticles

Besides being a known fact, this follows from the nature of waves. If a photon is an 

undulation on the surface of the expanding hypersphere, then its antiphoton would be 

an undulation of exactly the same wavelength and amplitude, but of opposite sign: 

undulating out when its photon is undulating in, and vice versa. By the nature of 

waves, this is just another undulation: one that is 180° out of phase with the original.

Photons move forward and backward in time—just a bit

Sound is a wave whose undulations take place in the direction of the sound’s 
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motion. A vibrating rope is a wave whose undulations take place in spatial dimensions 

perpendicular to the direction of the wave’s motion. In what direction do light waves 

undulate?

The displacements of the undulations of a propagating light wave are in the 

direction of advancing time—i.e., minuscule hills and valleys wrinkling and moving 

across the hyperspherical surface. In a sense, then, every wave of light moves ever so 

slightly forward and backward in time as it rides the hypersurface of the expanding 

universe. More precisely, from moment to moment it is just a little bit ahead of the 

average advancing surface and then just a little bit behind it.

Is a special mechanism for hyperinflation necessary?

As the hypersphere expands in the time dimension, it necessarily also increases in 

diameter in the spatial dimensions. Each layer of time is the thickness of one Planck 

unit, and like any regular object that is circular in cross section, it has a circumference of 

2π times the radius. The early universe was thus not only much smaller, but also of 

much higher curvature than it is today. But because a Planck-sized unit of space is of 

finite (albeit minuscule) size, the curvature of a one-Planck unit of space (in the Planck 

epoch) is not infinite—although it would have been extremely high.

Although the proposed theory is consistent with a period of early hyperinflation, 

there is no need to postulate a special mechanism to drive a hyperinflationary interval 

near the beginning of time. If the size of the universe is considered to be the 

circumference of this hypersphere (as opposed to a surface area or a volume), the 

circumference of the universe doubled in the first Planck time of its existence (an 

increase of 100%, as it grows from a radius of 1 Planck length to 2, in the Planck epoch). 

With the addition of the next layer, it increased 50% more (from 2 lengths to 3). 

Subsequent layers increased it by 33%, 25%, 20%, and so on—a series that, by the time it 

reaches the present era, has a rate of increase that has for (more than) all practical 

intents and purposes been constant for a very long time—a very low number, not 

actually zero, but nearly so, and decreasing in size (as a percentage) at a rate of 

deceleration that is today not measurably different from zero. Today’s rate of expansion 

would appear to be constant, both relatively (as a percentage) and absolutely (measured 

in Planck units). Indeed it has always been constant in absolute terms.

 The model is thus consistent with a period of inflation—if by “inflation” we mean a 

period of time in which the rate of expansion, on a percentage basis, was much larger 

than it is today. But it does not require the postulation of a special inflationary 

mechanism. 

Nothing can circumnavigate the expanding universe

Note that this hyperspherical model postulates a universe that is finite, unbounded, 



SCIENCE | 388

12

and growing, with a curvature that once was large, but has now effectively reached an 

asymptotic value of zero. Light traveling on the surface of this expanding hypersphere 

can continue in a straight line forever, but would never return to its starting point. If we 

were somehow to “freeze” the universe’s expansion, a wave of light would be able to 

circumnavigate the hypersphere in roughly the age of the universe times 2π. But the 

distance light would need to travel in an unfrozen, expanding universe would grow at a 

rate faster than light could travel along it.

The calculation is so simple that it barely needs to be performed. If the radius (age) 

of the universe at some moment is R (in Planck units of time), the circumference of a 

hypersphere of radius R is 2πR (in Planck units of distance). After an additional number 

of Planck layers have accumulated over a time increment r, the new circumference is 2π 

(R + r), an increase of 2πr Planck distances. But light traveling along the circumference 

would, during that time period, only be able to move r Planck units, which is a number 

quite a bit smaller than 2πr.

There are large regions of the universe that never can, and never could, 

communicate with each other

The conclusion that light cannot complete a circumnavigation in such a universe is 

also clear when one considers the geometry of light cones in an expanding 

hyperspherical universe. This seems so obvious that I hesitate to include an illustration 

of it. Nevertheless, I have done so (Figure 1).

In a flat universe, any observer’s light cone (X) will eventually intersect anyone 

else’s light cone (Y), as in Figure 1A. But even if every local area in the universe has a 

very flat curvature, this does not necessarily imply that the universe as a whole is flat.

Consider the planar cross-section diagrammed in Figure 1B. If you are on the 

uppermost point of this expanding hypersphere, your light cone delimits two 45-degree 

angle regions off of the vertical (in the illustration’s arrangement) into your future 

(which in Figure 1B is termed “U”). Your opposite standing on the lowermost point has 

a light cone into the future that is 180° in the opposite direction (headed “D”). Those 

light cones never intersect. Likewise, an observer at “R” in Figure 1B would experience 

a future light cone expanding to the right, and one on the leftmost point “L” would 

have a future expanding to the left. All of these light cones are non-overlapping, a fact 

that is another proof of the impossibility of circumnavigating the universe’s 

circumference.

If we were to have the ability to go back to the universe when it was in its earliest, 

smallest stages, we would see that the currently observable section of our universe 

would have originated in a narrow region of a tiny, seething hypersphere. Some sort of 

near energy equilibrium would be reached within the boundaries of that region, 
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without the necessity of having equilibrium established throughout the entire surface of 

the hypersphere. In the language of Figure 1B, the “U” region might be very different 

from the “D”, “R”, and “L” regions. Or it might not be very different. Neither of these 

facts are ones that future residents of those subregions would ever be able to 

communicate to each other, or to observe. In a universe as old as ours is now, the 

curvature everyone measures would be extremely close to zero—as far as our telescopes 

can see. We will never be able to observe the fact that the universe as a whole is still 

nearly spherical.

The universe cannot contract back to a singularity

It follows that the universe cannot contract back into a singularity. Matter exists in 

various parts of the universe that cannot communicate with each other. There is no way 

in which all of the universe’s matter can come back together at one location. At most, 

one could imagine the end state of the universe as a number of black holes, each having 

accumulated all the mass in its own region of space (followed by their eventual 

evaporation). But those black holes cannot move fast enough to encounter the black 

holes that must be presumed to exist on the various poles of the universe.
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Figure Captions

Figure 1

A:  

In a universe with a flat geometry, it is merely a matter of time before the light cones 

from two different points in space intersect. Thus, any part of the universe can 

eventually be observed from any specific point (X or Y) in the universe.

B:  

In a universe that has positive curvature overall, light cones into the future from two 

different locations might never intersect (viz., the light cone for U will never intersect 

those for D, L, and R). Thus, there must exist parts of the universe that can never be 

observed from one’s particular vantage point. 

 

Note: For simplicity, this illustration fails to take account of how, in an expanding 

universe, light cones will form curves when graphed from the perspective of spacetime 

(Harrison, 2000, Figure 21.10). This does not alter the fundamental insight, however.
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